首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8752篇
  免费   771篇
  2023年   85篇
  2022年   120篇
  2021年   343篇
  2020年   192篇
  2019年   254篇
  2018年   294篇
  2017年   247篇
  2016年   389篇
  2015年   582篇
  2014年   559篇
  2013年   690篇
  2012年   823篇
  2011年   742篇
  2010年   478篇
  2009年   369篇
  2008年   518篇
  2007年   454篇
  2006年   400篇
  2005年   355篇
  2004年   335篇
  2003年   287篇
  2002年   260篇
  2001年   46篇
  2000年   39篇
  1999年   48篇
  1998年   62篇
  1997年   42篇
  1996年   32篇
  1995年   30篇
  1994年   31篇
  1993年   29篇
  1992年   25篇
  1991年   24篇
  1990年   22篇
  1989年   17篇
  1988年   17篇
  1987年   23篇
  1986年   18篇
  1985年   25篇
  1984年   24篇
  1983年   23篇
  1982年   19篇
  1981年   10篇
  1980年   16篇
  1979年   15篇
  1978年   12篇
  1977年   8篇
  1976年   10篇
  1974年   11篇
  1972年   9篇
排序方式: 共有9523条查询结果,搜索用时 31 毫秒
61.
1α,25(OH)2-16-ene-D3, a synthetic analog of the steroid hormone, 1α,25(OH)2D3, has great potential to become a drug in the treatment of leukemia and other proliferative disorders, because of its minimal in vivo calcemic activity associated with a potent inhibitory effect on cell growth. However, at present, the mechanisms through which 1α,25(OH)2-16-ene-D3 expresses its biological activities are still not completely understood. Our previous in vitro study in a perfused rat kidney indicated for the first time that 1α,25(OH)2-16-ene-D3 and 1α,25(OH)2D3 are metabolized differently. 1α,25(OH)2-24-oxo-16-ene-D3, an intermediary metabolite of 1α,25(OH)2-16-ene-D3 formed through the C-24 oxidation pathway, accumulated significantly in the perfusate when compared to 1α,25(OH)2-24-oxo-D3, the corresponding intermediary metabolite of 1α,25(OH)2D3. In a subsequent in vivo study, we also reported that 1α,25(OH)2-24-oxo-16-ene-D3 exerted immunosuppressive activity equal to its parent, without causing significant hypercalcemia. In order to establish further the critical role of 1α,25(OH)2-24-oxo-16-ene-D3, in generating some of the key biological activities ascribed to its parent, we performed the present in vitro study using a human myeloid leukemic cell line (RWLeu-4) as a model. Comparative target tissue metabolism studies indicated that 1α,25(OH)2-16-ene-D3 and 1α,25(OH)2D3 are metabolized differently in RWLeu-4 cells, and the differences were similar to the ones we previously observed in the rat kidney. The significant finding was the accumulation of 1α,25(OH)2-24-oxo-16-ene-D3 in RWLeu-4 cells because of its resistance to further metabolism. Biological activity studies indicated that both 1α,25(OH)2-16-ene-D3 and its 24-oxo metabolite produced growth inhibition and promoted differentiation of RWLeu-4 cells to the same extent, and these activities were several fold higher than those exerted by 1α,25(OH)2D3. In addition, the genomic action of each vitamin D compound was assessed in a rat osteosarcoma cell line (ROS 17/2.8) by measuring its ability to transactivate a gene construct containing the vitamin D response element of the osteocalcin gene linked to the growth hormone reporter gene. In these studies, both 1α,25(OH)2-16-ene-D3 and its 24-oxo metabolite exerted similar but potent transactivation activity which was several fold greater than that exerted by 1α,25(OH)2D3 itself. In summary, our results indicate that the production and slow clearance of the bioactive intermediary metabolite, 1α,25(OH)2-24-oxo-16-ene-D3, in RWLeu-4 cells contributes significantly to the final expression of the enhanced biological activities ascribed to its parent analog, 1α,25(OH)2-16-ene-D3.  相似文献   
62.
63.
The isotopic fractionation associated with uptake of NO3by six species of phytoplankton (two diatoms, one cryptophyte,one chlorophyte and two haptophytes) was measured at a varietyof steady-state growth rates in nitrogen-limited continuousculture. The magnitude of the isotopic fractionation factor(  相似文献   
64.
The quadruple metal-metal bonded complexes, W2Cl4(PR3)4 (PR3 = PMe3, PMe2Ph, PBu3), photoreact in dichloromethane with near-UV excitation (λ>375 nm) to yield a mixed valence W2(II,III) photoproduct. Electronic absorption and EPR spectra of photolyzed solutions are identical to those obtained from the thermal oxidation of W2Cl4(PR3)4 by PhICI2, which is known to yield W2Cl5(PR3)3. Subsequent reaction of the photolyzed solution yields the oxidized, confacial biotahedral W2(III,III) halophosphine. Analysis of the organic photoproduct reveals that the halocarbon solvent is reduced by one electron to yield the chloromethyl radical. When the radical is produced in low yields, hydrogen abstraction from solvent appears to be sufficiently efficient to compete with dimerization and only chloromethane is observed; however, at higher concentrations, the chloromethyl radicals couple to produce dichloroethane. Photoreaction is observed only with near-UV excitation of the LMCT absorption manifold of W2Cl4(PR3)4. At lower energy wavelengths, transient absorption spectroscopy shows the production of the 1δδ* excited state, which decays to ground state over times commensurate with the decay of 1δδ* luminescence. In hydrocarbon solutions, no transient intermediate or photochemistry is observed, indicating that the LMCT excited state, although capable of reducing a C---X bond, cannot activate the stronger C---H bonds of hydrocarbons. The photochemistry and transient absorption spectroscopy results of the W2Cl4(PR3)4 complexes are compared to our previous studies of the homologs.  相似文献   
65.
Reproductive female 15-spined sticklebacks Spinachia spinachia chose water flowing from an unmated nesting male rather than water flowing from no male. Since the female could see neither the male nor his nest, this result suggests that she received non-visual signals.  相似文献   
66.
A 1-3 galactosyltransferase (GalT-3; UDP-Gal; GM2 1-3galactosyltransferase) was purified over 5100-fold from 19-day-old embryonic chicken brain homogenate employing detergent solubilization, -lactalbumin Sepharose, Q-Sepharose, UDP-hexanolamine Sepharose, and GalNAc1-4Gal-Synsorb column chromatography. The purified enzyme was resolved into two bands on reducing gels with apparent molecular weights of 62 kDa and 65 kDa, respectively. GalT-3 activity was also localized in the same regions by activity gel analysis and sucrose-density gradient centrifugation of a detergent-solubilized extract of 19-day-old embryonic chicken brain. Purified GalT-3 exhibited apparentK mS of 33 µm, 22 µm and 14.4mM with respect to the substrates GM2, UDP-galactose, and MnCl2, respectively. Substrate specificity studies with the purified enzyme and a variety of glycosphingolipids, glycoproteins, and synthetic substrates revealed that the enzyme was highly specific only for the glycosphingolipid acceptors, GM2 and GgOse3Cer (asialo-GM2). Ovine-asialo-agalacto submaxillary mucin inhibited the transfer of galactose to GM2 but did not act as an acceptor in the range of concentrations tested. Polyclonal antibodies raised against purified GalT-3 inhibited GalT-3 activityin vitro and Western-immunoblot analysis of purified GalT-3 showed immunopositive bands at 62 and 65 kDa.Abbreviations CNS central nervous system - GM1 monosialotetraosylganglioside, Gal1-3GalNAc1-4(NeuAc2-3)Gal1-4Glc1-1Cer - GM2 monosialotriaosylganglioside, GalNAc1-4(NeuAc2-3)Gal1-4Glc1-1Cer - DSS detergent solubilized supernatant - ECB embryonic chicken brain - TBS Tris-buffered saline  相似文献   
67.
The Fas/APO-1/CD95 ligand (CD95L) and the recently cloned TRAIL ligand belong to the TNFfamily and share the ability to induce apoptosis in sensitive target cells. Little information is available on the degree of functional redundancy between these two ligands in terms of target selectivity and intracellular signalling pathway(s). To address these issues, we have expressed and characterized recombinant mouse TRAIL. Specific detection with newly developed rabbit anti-TRAIL antibodies showed that the functional TRAIL molecule released into the supernatant of recombinant baculovirus-infected Sf9 cells is very similar to that associated with the membrane fraction of Sf9 cells. CD95L resistant myeloma cells were found to be sensitive to TRAIL, displaying apoptotic features similar to those of the CD95L- and TRAIL-sensitive T leukemia cells Jurkat. To assess if IL-1β-converting enzyme (ICE) and/or ICE-related proteases (IRPs) (caspases) are involved in TRAIL-induced apoptosis of both cell types, peptide inhibition experiments were performed. The irreversible IRP/caspase-inhibitor AcYVAD-cmk and the reversible IRP/caspase-inhibitor Ac-DEVD-CHO blocked the morphological changes, disorganization of plasma membrane phospholipids, DNA fragmentation, and loss of cell viability associated with TRAIL-induced apoptosis. In addition, cells undergoing TRAIL-mediated apoptosis displayed cleavage of poly(ADP)-ribose polymerase (PARP) that was completely blocked by Ac-DEVD-CHO.

These results indicate that TRAIL seems to complement the activity of the CD95 system as it allows cells, otherwise resistant, to undergo apoptosis triggered by specific extracellular ligands. Conversely, however, induction of apoptosis in sensitive cells by TRAIL involves IRPs/caspases in a fashion similar to CD95L. Thus, differential sensitivity to CD95L and TRAIL seems to map to the proximal signaling events associated with receptor triggering.

  相似文献   
68.
Abstract: The neurotoxic effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was tested on mice lacking the dopamine (DA) transporter (DAT−/− mice). Striatal tissue DA content and glial fibrillary acidic protein (GFAP) mRNA expression were assessed as markers of MPTP neurotoxicity. MPTP (30 mg/kg, s.c., b.i.d.) produced an 87% decrease in tissue DA levels and a 29-fold increase in the level of GFAP mRNA in the striatum of wild-type animals 48 h after administration. Conversely, there were no significant changes in either parameter in DAT−/− mice. Heterozygotes demonstrated partial sensitivity to MPTP administration as shown by an intermediate value (48%) of tissue DA loss. Direct intrastriatal infusion of the active metabolite of MPTP, 1-methyl-4-phenylpyridinium (MPP+; 10 m M ), via a microdialysis probe produced a massive efflux of DA in wild-type mice (>320-fold). In the DAT−/− mice the same treatment produced a much smaller increase in extracellular DA (sixfold), which is likely secondary to tissue damage due to the implantation of the dialysis probe. These observations show that the DAT is a mandatory component for expression of MPTP toxicity in vivo.  相似文献   
69.
The cDNA encoding human DNA helicase IV (HDH IV), a 100-kDa protein which unwinds DNA in the 5′ to 3′ direction with respect to the bound strand, was cloned and sequenced. It was found to be identical to the human cDNA encoding nucleolin, a ubiquitous eukaryotic protein essential for pre-ribosome assembly. HDH IV/nucleolin can unwind RNA-RNA duplexes, as well as DNA-DNA and DNA-RNA duplexes. Phosphorylation of HDH IV/nucleolin by cdc2 kinase and casein kinase II enhanced its unwinding activity in an additive way. The Gly-rich C-terminal domain possesses a limited ATP-dependent duplex-unwinding activity which contributes to the helicase activity of HDH IV/nucleolin.  相似文献   
70.
The ω-chain variant analogs of prostacyclin (PGI2) and PGD2 in which the n-amyl side-chain has been replaced by a cyclohexyl group have been prepared and their cardiovascular activities have been compared to those of BW-245C(Fig. 1)(1) a potent anti-aggregatory vasodilator bearing a cyclohexyl-terminated side-chain on a hydantoin skeleton. The cyclohexyl group has little effect on PGI2, but converts PGD2 to a long lasting hypotensive agent and increases the platelet anti-aggregatory potency of PGD2 by a factor of 8. The prostaglandin antagonist N-0164 selectively blocks the anti-aggregatory actions of PGD2, cyclohexyl-PGD2, and BW-245C; with essentially no effect on PGI2, cyclohexyl-PGI2 and PGE2 at comparably effective doses. The latter observation is contrary to an earlier report by MacIntyre (2,3), but supports the view that the anti-aggregatory effect of high doses of PGE2 (EC50=50μM) is mediated by the PGI2 receptor (4). The hydantoin acts at the platelet PGD2 receptor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号