全文获取类型
收费全文 | 8205篇 |
免费 | 726篇 |
国内免费 | 1篇 |
专业分类
8932篇 |
出版年
2024年 | 9篇 |
2023年 | 89篇 |
2022年 | 179篇 |
2021年 | 323篇 |
2020年 | 187篇 |
2019年 | 237篇 |
2018年 | 272篇 |
2017年 | 230篇 |
2016年 | 366篇 |
2015年 | 562篇 |
2014年 | 544篇 |
2013年 | 660篇 |
2012年 | 776篇 |
2011年 | 716篇 |
2010年 | 457篇 |
2009年 | 348篇 |
2008年 | 486篇 |
2007年 | 424篇 |
2006年 | 374篇 |
2005年 | 329篇 |
2004年 | 306篇 |
2003年 | 264篇 |
2002年 | 232篇 |
2001年 | 36篇 |
2000年 | 23篇 |
1999年 | 37篇 |
1998年 | 59篇 |
1997年 | 33篇 |
1996年 | 29篇 |
1995年 | 25篇 |
1994年 | 23篇 |
1993年 | 25篇 |
1992年 | 9篇 |
1991年 | 18篇 |
1990年 | 12篇 |
1989年 | 10篇 |
1988年 | 11篇 |
1987年 | 17篇 |
1986年 | 11篇 |
1985年 | 18篇 |
1984年 | 19篇 |
1983年 | 17篇 |
1982年 | 17篇 |
1981年 | 9篇 |
1980年 | 10篇 |
1979年 | 13篇 |
1978年 | 8篇 |
1977年 | 7篇 |
1976年 | 7篇 |
1972年 | 8篇 |
排序方式: 共有8932条查询结果,搜索用时 15 毫秒
61.
Kim J Temple KA Jones SA Meredith KN Basko JL Brady MJ 《The Journal of biological chemistry》2007,282(15):11038-11046
The localized activation of circulating glucocorticoids in vivo by the enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) plays a critical role in the development of the metabolic syndrome. However, the precise contribution of 11beta-HSD1 in the initiation of adipogenesis by inactive glucocorticoids is not fully understood. 3T3-L1 fibroblasts can be terminally differentiated to mature adipocytes in a glucocorticoid-dependent manner. Both inactive rodent dehydrocorticosterone and human cortisone were able to substitute for the synthetic glucocorticoid dexamethasone in 3T3-L1 adipogenesis, suggesting a potential role for 11beta-HSD1 in these effects. Differentiation of 3T3-L1 cells caused a strong increase in 11beta-HSD1 protein levels, which occurred late in the differentiation protocol. Reduction of 11beta-HSD1 activity in 3T3-L1 fibroblasts, achieved by pharmacological inhibition or adenovirally mediated delivery of short hairpin RNA constructs, specifically blocked the ability of inactive glucocorticoids to drive 3T3-L1 differentiation. However, even modest increases in exogenous 11beta-HSD1 expression in 3T3-L1 fibroblasts, to levels comparable with endogenous 11beta-HSD1 in differentiated 3T3-L1 adipocytes, were sufficient to block adipogenesis. Luciferase reporter assays indicated that overexpressed 11beta-HSD1 was catalyzing the inactivating dehydrogenase reaction, because the ability of both active and inactive glucocorticoids to activate the glucocorticoid receptor were largely suppressed. These results suggest that the temporal regulation of 11beta-HSD1 expression is tightly controlled in 3T3-L1 cells, so as to mediate the initiation of differentiation by inactive glucocorticoids and also to prevent the inhibitory activity of prematurely expressed 11beta-HSD1 during adipogenesis. 相似文献
62.
63.
Sara M. Handy Tsvetan R. Bachvaroff Ruth E. Timme D. Wayne Coats Sunju Kim Charles F. Delwiche 《Journal of phycology》2009,45(5):1163-1174
Dinoflagellates are a highly diverse and environmentally important group of protists with relatively poor resolution of phylogenetic relationships, particularly among heterotrophic species. We examined the phylogeny of several dinophysiacean dinoflagellates using samples collected from four Atlantic sites. As a rule, 3.5 kb of sequence including the nuclear ribosomal genes SSU, 5.8S, LSU, plus their internal transcribed spacer (ITS) 1 and 2 regions were determined for 26 individuals, including representatives of two genera for which molecular data were previously unavailable, Ornithocercus F. Stein and Histioneis F. Stein. In addition, a clone library targeting the dinophysiacean ITS2 and LSU sequences was constructed from bulk environmental DNA from three sites. Three phylogenetic trees were inferred from the data, one using data from this study for cells identified to genus or species (3.5 kb, 28 taxa); another containing dinoflagellate SSU submissions from GenBank and the 12 new dinophysiacean sequences (1.9 kb, 56 taxa) from this study; and the third tree combing data from identified taxa, dinophysiacean GenBank submissions, and the clone libraries from this study (2.1 kb, 136 taxa). All trees were congruent and indicated a distinct division between the genera Phalacroma F. Stein and Dinophysis Ehrenb. The cyanobionts containing genera Histioneis and Ornithocercus were also monophyletic. This was the largest molecular phylogeny of dinophysoid taxa performed to date and was consistent with the view that the genus Phalacroma may not be synonymous with Dinophysis. 相似文献
64.
65.
Regan SE Broad M Byford AM Lankford AR Cerniway RJ Mayo MW Matherne GP 《American journal of physiology. Heart and circulatory physiology》2003,284(3):H859-H866
We tested the hypothesis that myocardial ischemia-reperfusion (I/R)-induced apoptosis is attenuated in transgenic mice overexpressing cardiac A(1) adenosine receptors. Isolated hearts from transgenic (TG, n = 19) and wild-type (WT, n = 22) mice underwent 30 min of ischemia and 2 h of reperfusion, with evaluation of apoptosis, caspase 3 activity, function, and necrosis. I/R-induced apoptosis was attenuated in TG hearts. TG hearts had less I/R-induced apoptotic nuclei (0.88 +/- 0.10% vs. 4.22 +/- 0.24% terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive cells in WT, P < 0.05), less DNA fragmentation (3.30 +/- 0.38-fold vs. 4.90 +/- 0.39-fold over control in WT, P < 0.05), and less I/R-induced caspase 3 activity (145 +/- 25% over nonischemic control vs. 234 +/- 31% in WT, P < 0.05). TG hearts also had improved recovery of function and less necrosis than WT hearts. In TG hearts pretreated with LY-294002 (3 microM) to evaluate the role of phosphosinositol-3-kinase in acute signaling, there was no change in the functional protection or apoptotic response to I/R. These data suggest that cardioprotection with transgenic overexpression of A(1) adenosine receptors involves attenuation of I/R-induced apoptosis that does not involve acute signaling through phosphoinositol-3-kinase. 相似文献
66.
67.
The light-harvesting proteins (Lhca) of photosystem I (PSI) from four monocot and five dicot species were extracted from plant material, separated by reversed-phase high-performance liquid chromatography (HPLC) and subsequently identified on the basis of their intact molecular masses upon on-line hyphenation with electrospray ionization mass spectrometry. Although their migration behavior in gel electrophoresis was very similar, the elution times among the four antenna types in reversed-phase-HPLC differed significantly, even more than those observed for the light-harvesting proteins of photosystem II. Identification of proteins is based on the good agreement between the measured intact molecular masses and the values calculated on the basis of their nucleotide-derived amino acid sequences, which makes the intact molecular masses applicable as intact mass tags. These values match excellently for Arabidopsis, most probably because of the availability of high-quality DNA sequence data. In all species examined, the four antennae eluted in the same order, namely Lhca1 > Lhca3 > Lhca4 > Lhca2. These characteristic patterns enabled an unequivocal assignment of the proteins in preparations from different species. Interestingly, in all species examined, Lhca1 and Lhca2 were present in two or three isoforms. A fifth antenna protein, corresponding to the Lhca6 gene, was found in tomato (Lycopersicon esculentum). However PSI showed a lower heterogeneity than photosystem II. In most plant species, Lhca2 and Lhca4 proteins are the most abundant PSI antenna proteins. The HPLC method used in this study was found to be highly reproducible, and the chromatograms may serve as a highly confident fingerprint for comparison within a single and among different species for future studies of the PSI antenna. 相似文献
68.
From lignocellulosic residues to market: Production and commercial potential of xylooligosaccharides
Cláudia Amorim Sara C. Silvério Kristala L.J. Prather Lígia R. Rodrigues 《Biotechnology advances》2019,37(7):107397
The updated definition of prebiotic expands the range of potential applications in which emerging xylooligosaccharides (XOS) can be used. It has been demonstrated that XOS exhibit prebiotic effects at lower amounts compared to others, making them competitively priced prebiotics. As a result, the industry is focused on developing alternative approaches to improve processes efficiency that can meet the increasing demand while reducing costs. Recent advances have been made towards greener and more efficient processes, by applying process integration strategies to produce XOS from costless lignocellulosic residues and using genetic engineering to create microorganisms that convert these residues to XOS. In addition, collecting more in vivo data on their performance will be key to achieve regulatory claims, greatly increasing XOS commercial value. 相似文献
69.
Emilien Loeuillard Haquima El Mourabit Lin Lei Sara Lemoinne Chantal Housset Axelle Cadoret 《生物化学与生物物理学报:疾病的分子基础》2018,1864(12):3688-3696
Portal myofibroblasts (PMF) form a sub-population of highly proliferative and proangiogenic liver myofibroblasts that derive from portal mesenchymal progenitors. Endoplasmic reticulum (ER) stress was previously shown to modulate fibrogenesis, notably in the liver. Our aim was to determine if ER stress occurred in PMF and affected their functions. PMF were obtained after their expansion in vivo from bile duct-ligated (BDL) rats and referred to as BDL PMF. Compared to standard PMF obtained from normal rats, BDL PMF were more myofibroblastic, as assessed by higher alpha-smooth muscle actin expression and collagen 1 production. Their proangiogenic properties were also higher, whereas their proliferative and migratory capacities were lower. CHOP expression was detected in the liver of BDL rats, at the leading edge of portal fibrosis where PMF accumulate. BDL PMF displayed ER dilatation and an overexpression of the PERK pathway downstream targets, Chop, Gadd34 and Trb3, in comparison with standard PMF. In vitro, the induction of ER stress by tunicamycin in standard PMF, caused a decrease in their proliferative and migratory activity, and an increase in their proangiogenic activity, without affecting their myofibroblastic differentiation. Conversely, the treatment of BDL PMF with the PERK inhibitor GSK2656157 reduced ER stress, which caused a decrease in their angiogenic properties, and restored their proliferative and migratory capacity. In conclusion, PMF develop ER stress as they expand with the progression of fibrosis, which further increases their proangiogenic activity, but also inhibits their proliferation and migration. This phenotypic switch may restrict PMF expansion while they support angiogenesis. 相似文献
70.
Nam-On Ku Sara A. Michie Roy M. Soetikno Evelyn Z. Resurreccion Rosemary L. Broome M. Bishr Omary 《The Journal of cell biology》1998,143(7):2023-2032
Simple epithelia express keratins 8 (K8) and 18 (K18) as their major intermediate filament (IF) proteins. One important physiologic function of K8/18 is to protect hepatocytes from drug-induced liver injury. Although the mechanism of this protection is unknown, marked K8/18 hyperphosphorylation occurs in association with a variety of cell stresses and during mitosis. This increase in keratin phosphorylation involves multiple sites including human K18 serine-(ser)52, which is a major K18 phosphorylation site. We studied the significance of keratin hyperphosphorylation and focused on K18 ser52 by generating transgenic mice that overexpress a human genomic K18 ser52→ ala mutant (S52A) and compared them with mice that overexpress, at similar levels, wild-type (WT) human K18. Abrogation of K18 ser52 phosphorylation did not affect filament organization after partial hepatectomy nor the ability of mouse livers to regenerate. However, exposure of S52A-expressing mice to the hepatotoxins, griseofulvin or microcystin, which are associated with K18 ser52 and other keratin phosphorylation changes, resulted in more dramatic hepatotoxicity as compared with WT K18-expressing mice. Our results demonstrate that K18 ser52 phosphorylation plays a physiologic role in protecting hepatocytes from stress-induced liver injury. Since hepatotoxins are associated with increased keratin phosphorylation at multiple sites, it is likely that unique sites aside from K18 ser52, and phosphorylation sites on other IF proteins, also participate in protection from cell stress. 相似文献