首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8247篇
  免费   725篇
  8972篇
  2024年   9篇
  2023年   89篇
  2022年   179篇
  2021年   323篇
  2020年   188篇
  2019年   237篇
  2018年   272篇
  2017年   230篇
  2016年   366篇
  2015年   562篇
  2014年   544篇
  2013年   660篇
  2012年   778篇
  2011年   720篇
  2010年   458篇
  2009年   348篇
  2008年   487篇
  2007年   425篇
  2006年   379篇
  2005年   331篇
  2004年   308篇
  2003年   265篇
  2002年   233篇
  2001年   38篇
  2000年   28篇
  1999年   39篇
  1998年   59篇
  1997年   34篇
  1996年   29篇
  1995年   25篇
  1994年   23篇
  1993年   25篇
  1992年   10篇
  1991年   22篇
  1990年   13篇
  1989年   10篇
  1988年   11篇
  1987年   18篇
  1986年   11篇
  1985年   18篇
  1984年   19篇
  1983年   17篇
  1982年   17篇
  1981年   10篇
  1980年   10篇
  1979年   13篇
  1978年   9篇
  1977年   7篇
  1976年   7篇
  1972年   8篇
排序方式: 共有8972条查询结果,搜索用时 10 毫秒
81.
The glycosyltransferases (GTs) are an important and functionally diverse family of enzymes involved in glycan and glycoside biosynthesis. Plants have evolved large families of GTs which undertake the array of glycosylation reactions that occur during plant development and growth. Based on the Carbohydrate‐Active enZymes (CAZy) database, the genome of the reference plant Arabidopsis thaliana codes for over 450 GTs, while the rice genome (Oryza sativa) contains over 600 members. Collectively, GTs from these reference plants can be classified into over 40 distinct GT families. Although these enzymes are involved in many important plant specific processes such as cell‐wall and secondary metabolite biosynthesis, few have been functionally characterized. We have sought to develop a plant GTs clone resource that will enable functional genomic approaches to be undertaken by the plant research community. In total, 403 (88%) of CAZy defined Arabidopsis GTs have been cloned, while 96 (15%) of the GTs coded by rice have been cloned. The collection resulted in the update of a number of Arabidopsis GT gene models. The clones represent full‐length coding sequences without termination codons and are Gateway® compatible. To demonstrate the utility of this JBEI GT Collection, a set of efficient particle bombardment plasmids (pBullet) was also constructed with markers for the endomembrane. The utility of the pBullet collection was demonstrated by localizing all members of the Arabidopsis GT14 family to the Golgi apparatus or the endoplasmic reticulum (ER). Updates to these resources are available at the JBEI GT Collection website http://www.addgene.org/ .  相似文献   
82.
Resveratrol: one molecule, many targets   总被引:1,自引:0,他引:1  
Pirola L  Fröjdö S 《IUBMB life》2008,60(5):323-332
Resveratrol is one of the numerous polyphenolic compounds found in several vegetal sources. In recent years, the interest in this molecule has increased exponentially following the major findings that resveratrol (i) is shown to be chemopreventive in some cancer models, (ii) is cardioprotective, and (iii) has positive effects on several aspects of metabolism, leading to increased lifespan in all the metazoan models tested thus far, including small mammals. Such remarkable properties have elicited a vast interest towards the identification of target proteins of resveratrol and have led to the identification of enzymes inhibited by resveratrol and others whose activation is enhanced. In the vast majority of cases, resveratrol displays inhibitory/activatory effects in the micromolar range, which is potentially attainable pharmacologically, although targets with affinities in the nanomolar range have also been reported. Here, we provide an overview of the various classes of enzymes known to be inhibited (or activated) by resveratrol. It appears that resveratrol, as a pharmacological agent, has a wide spectrum of targets. The biological activities of resveratrol may thus be dependent on its simultaneous activity on multiple molecular targets.  相似文献   
83.
Antimicrobial peptides (AMPs) are promising compounds for developing new antibiotic drugs against drug‐resistant bacteria. Many of them kill bacteria by perturbing their membranes but exhibit no significant toxicity towards eukaryotic cells. The identification of the features responsible for this selectivity is essential for their pharmacological development. AMPs exhibit few conserved features, but a statistical analysis of an AMP sequence database indicated that many α‐helical AMPs surprisingly have a helix‐breaking Pro residue in the middle of their sequence. To discriminate among the different possible hypotheses for the functional role of this feature, we designed an analogue of the antimicrobial peptide P5, in which the central Pro was deleted (analogue P5Del). Pro removal resulted in a dramatic increase of toxicity. This was explained by the observation that P5Del binds both charged and neutral membranes, whereas P5 has no appreciable affinity towards neutral bilayers. CD and simulative data provided a rationalization of this behavior. In solution P5, due to the presence of Pro, attains compact conformations, in which its apolar residues are partially shielded from the solvent, whereas P5Del is more helical. These structural differences reduce the hydrophobic driving force for association of P5 to neutral membranes, whereas its binding to anionic bilayers can still take place because of electrostatic attraction. After membrane binding, the Pro residue does not preclude the attainment of a membrane‐active amphiphilic helical conformation. These findings shed light on the role of Pro residues in the selectivity of AMPs and provide hints for the design of new, highly selective compounds. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
84.
α-Glucosidase inhibitors are described as the most effective in reducing post-prandial hyperglycaemia (PPHG) from all available anti-diabetic drugs used in the management of type 2 diabetes mellitus. As flavonoids are promising modulators of this enzyme’s activity, a panel of 44 flavonoids, organised in five groups, was screened for their inhibitory activity of α-glucosidase, based on in vitro structure–activity relationship studies. Inhibitory kinetic analysis and molecular docking calculations were also applied for selected compounds. A flavonoid with two catechol groups in A- and B-rings, together with a 3-OH group at C-ring, was the most active, presenting an IC50 much lower than the one found for the most widely prescribed α-glucosidase inhibitor, acarbose. The present work suggests that several of the studied flavonoids have the potential to be used as alternatives for the regulation of PPHG.  相似文献   
85.
The genus Caldicellulosiruptor contains extremely thermophilic bacteria that grow on plant polysaccharides. The genomes of Caldicellulosiruptor species reveal certain surface layer homology (SLH) domain proteins that have distinguishing features, pointing to a role in lignocellulose deconstruction. Two of these proteins in Caldicellulosiruptor saccharolyticus (Csac_0678 and Csac_2722) were examined from this perspective. In addition to three contiguous SLH domains, the Csac_0678 gene encodes a glycoside hydrolase family 5 (GH5) catalytic domain and a family 28 carbohydrate-binding module (CBM); orthologs to Csac_0678 could be identified in all genome-sequenced Caldicellulosiruptor species. Recombinant Csac_0678 was optimally active at 75°C and pH 5.0, exhibiting both endoglucanase and xylanase activities. SLH domain removal did not impact Csac_0678 GH activity, but deletion of the CBM28 domain eliminated binding to crystalline cellulose and rendered the enzyme inactive on this substrate. Csac_2722 is the largest open reading frame (ORF) in the C. saccharolyticus genome (predicted molecular mass of 286,516 kDa) and contains two putative sugar-binding domains, two Big4 domains (bacterial domains with an immunoglobulin [Ig]-like fold), and a cadherin-like (Cd) domain. Recombinant Csac_2722, lacking the SLH and Cd domains, bound to cellulose and had detectable carboxymethylcellulose (CMC) hydrolytic activity. Antibodies directed against Csac_0678 and Csac_2722 confirmed that these proteins bound to the C. saccharolyticus S-layer. Their cellular localization and functional biochemical properties indicate roles for Csac_0678 and Csac_2722 in recruitment and hydrolysis of complex polysaccharides and the deconstruction of lignocellulosic biomass. Furthermore, these results suggest that related SLH domain proteins in other Caldicellulosiruptor genomes may also be important contributors to plant biomass utilization.  相似文献   
86.
87.
88.
Presented here is an engineered protein domain, based on Protein A, that displays a calcium-dependent binding to antibodies. This protein, ZCa, is shown to efficiently function as an affinity ligand for mild purification of antibodies through elution with ethylenediaminetetraacetic acid. Antibodies are commonly used tools in the area of biological sciences and as therapeutics, and the most commonly used approach for antibody purification is based on Protein A using acidic elution. Although this affinity-based method is robust and efficient, the requirement for low pH elution can be detrimental to the protein being purified. By introducing a calcium-binding loop in the Protein A-derived Z domain, it has been re-engineered to provide efficient antibody purification under mild conditions. Through comprehensive analyses of the domain as well as the ZCa–Fc complex, the features of this domain are well understood. This novel protein domain provides a very valuable tool for effective and gentle antibody and Fc-fusion protein purification.  相似文献   
89.
DNA vaccines consisted of tumor-associated antigen (TAA) are well suited for immunotherapy against tumor. The construct can contain TAA fused to an appropriate molecule (biologic adjuvant) to improve the efficacy of anti-tumor immune response. Heat shock protein 70 (HSP70) has been shown to be an excellent candidate, capable of cross-priming TAA by antigen presenting cells leading to a robust T-cell response. However, the relationship between strong T-cell responses and tumor rejection is not always mutually exclusive, for which TAA loss or activation of suppressive mechanisms may occur. HSP70 fused to downstream of Her2/neu as DNA vaccine has been shown to be efficient against Her2-expressing tumors. In this study, we examined if N-terminally fusion of Her2/neu to HSP70 could also improve efficiency of Her2/neu DNA vaccine. Therefore, mice with an established Her2/neu expressing tumor were immunized with DNA vaccine consisting of extracellular and trans-membrane domain (EC+TM) of rat Her2/neu alone or N-terminally fused to HSP70 and immune response was evaluated. Administration of rat Her2/neu led to partial control of tumor progression. Surprisingly, fusion of HSP70 to N-terminal of rat Her2/neu led to tumor progression. Our result proposes that fusion direction of biologic adjuvant is an important consideration when Her2/neu is used.  相似文献   
90.
Pescaprein XVIII (1), a type of bacterial efflux pump inhibitor, was obtained from the CHCl3-soluble resin glycosides of beach morning glory (Ipomoea pes-caprae). The glycosidation sequence for pescaproside C, the glycosidic acid core of the lipophilic macrolactone 1 containing d-xylose and l-rhamnose, was characterized by means of several NMR techniques and FAB mass spectrometry. Recycling HPLC also yielded eight non-cytotoxic bacterial resistance modifiers, the two pescapreins XIX (2) and XX (3) as well as the known murucoidin VI (4), pecapreins II (6) and III (7), and stoloniferins III (5), IX (8) and X (9), all of which contain simonic acid B as their oligosaccharide core. Compounds 19 were tested for in vitro antibacterial and resistance-modifying activity against strains of Staphylococcus aureus possessing multidrug resistance efflux mechanisms. All of the pescapreins potentiated the action of norfloxacin against the NorA over-expressing strain by 4-fold (8 μg/mL from 32 μg/mL) at a concentration of 25 μg/mL.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号