首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13719篇
  免费   1089篇
  国内免费   1篇
  14809篇
  2023年   132篇
  2022年   266篇
  2021年   475篇
  2020年   300篇
  2019年   368篇
  2018年   459篇
  2017年   376篇
  2016年   581篇
  2015年   884篇
  2014年   879篇
  2013年   1035篇
  2012年   1251篇
  2011年   1140篇
  2010年   730篇
  2009年   589篇
  2008年   751篇
  2007年   725篇
  2006年   624篇
  2005年   531篇
  2004年   499篇
  2003年   414篇
  2002年   370篇
  2001年   135篇
  2000年   133篇
  1999年   112篇
  1998年   103篇
  1997年   72篇
  1996年   57篇
  1995年   52篇
  1994年   40篇
  1993年   47篇
  1992年   46篇
  1991年   57篇
  1990年   39篇
  1989年   30篇
  1988年   33篇
  1987年   40篇
  1986年   32篇
  1985年   31篇
  1984年   40篇
  1983年   27篇
  1982年   25篇
  1981年   16篇
  1980年   20篇
  1979年   23篇
  1976年   15篇
  1975年   16篇
  1974年   19篇
  1973年   16篇
  1972年   22篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
291.
Controlling the dissemination of malaria requires the development of new drugs against its etiological agent, a protozoan of the Plasmodium genus. Angiotensin II and its analog peptides exhibit activity against the development of immature and mature sporozoites of Plasmodium gallinaceum. In this study, we report the synthesis and characterization of angiotensin II linear and cyclic analogs with anti‐plasmodium activity. The peptides were synthesized by a conventional solid‐phase method on Merrifield's resin using the t‐Boc strategy, purified by RP‐HPLC and characterized by liquid chromatography/ESI (+) MS (LC‐ESI(+)/MS), amino acid analysis, and capillary electrophoresis. Anti‐plasmodium activity was measured in vitro by fluorescence microscopy using propidium iodine uptake as an indicator of cellular damage. The activities of the linear and cyclic peptides are not significantly different (p < 0.05). Kinetics studies indicate that the effects of these peptides on plasmodium viability overtime exhibit a sigmoidal profile and that the system stabilizes after a period of 1 h for all peptides examined. The results were rationalized by partial least‐square analysis, assessing the position‐wise contribution of each amino acid. The highest contribution of polar amino acids and a Lys residue proximal to the C‐terminus, as well as that of hydrophobic amino acids in the N‐terminus, suggests that the mechanism underlying the anti‐malarial activity of these peptides is attributed to its amphiphilic character. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
292.
Antimicrobial peptides (AMPs) are promising compounds for developing new antibiotic drugs against drug‐resistant bacteria. Many of them kill bacteria by perturbing their membranes but exhibit no significant toxicity towards eukaryotic cells. The identification of the features responsible for this selectivity is essential for their pharmacological development. AMPs exhibit few conserved features, but a statistical analysis of an AMP sequence database indicated that many α‐helical AMPs surprisingly have a helix‐breaking Pro residue in the middle of their sequence. To discriminate among the different possible hypotheses for the functional role of this feature, we designed an analogue of the antimicrobial peptide P5, in which the central Pro was deleted (analogue P5Del). Pro removal resulted in a dramatic increase of toxicity. This was explained by the observation that P5Del binds both charged and neutral membranes, whereas P5 has no appreciable affinity towards neutral bilayers. CD and simulative data provided a rationalization of this behavior. In solution P5, due to the presence of Pro, attains compact conformations, in which its apolar residues are partially shielded from the solvent, whereas P5Del is more helical. These structural differences reduce the hydrophobic driving force for association of P5 to neutral membranes, whereas its binding to anionic bilayers can still take place because of electrostatic attraction. After membrane binding, the Pro residue does not preclude the attainment of a membrane‐active amphiphilic helical conformation. These findings shed light on the role of Pro residues in the selectivity of AMPs and provide hints for the design of new, highly selective compounds. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
293.
Pollen fate can strongly affect the genetic structure of populations with restricted gene flow and significant inbreeding risk. We established an experimental population of inbred and outbred Silene latifolia plants to evaluate the effects of (i) inbreeding depression, (ii) phenotypic variation and (iii) relatedness between mates on male fitness under natural pollination. Paternity analysis revealed that outbred males sired significantly more offspring than inbred males. Independently of the effects of inbreeding, male fitness depended on several male traits, including a sexually dimorphic (flower number) and a gametophytic trait (in vitro pollen germination rate). In addition, full-sib matings were less frequent than randomly expected. Thus, inbreeding, phenotype and genetic dissimilarity simultaneously affect male fitness in this animal-pollinated plant. While inbreeding depression might threaten population persistence, the deficiency of effective matings between sibs and the higher fitness of outbred males will reduce its occurrence and counter genetic erosion.  相似文献   
294.
Southeast‐Asia (SEA) constitutes a global biodiversity hotspot, but is exposed to extensive deforestation and faces numerous threats to its biodiversity. Climate change represents a major challenge to the survival and viability of species, and the potential consequences must be assessed to allow for mitigation. We project the effects of several climate change scenarios on bat diversity, and predict changes in range size for 171 bat species throughout SEA. We predict decreases in species richness in all areas with high species richness (>80 species) at 2050–2080, using bioclimatic IPCC scenarios A2 (a severe scenario, continuously increasing human population size, regional changes in economic growth) and B1 (the ‘greenest’ scenario, global population peaking mid‐century). We also predicted changes in species richness in scenarios that project vegetation changes in addition to climate change up to 2050. At 2050 and 2080, A2 and B1 scenarios incorporating changes in climatic factors predicted that 3–9% species would lose all currently suitable niche space. When considering total extents of species distribution in SEA (including possible range expansions), 2–6% of species may have no suitable niche space in 2050–2080. When potential vegetation and climate changes were combined only 1% of species showed no changes in their predicted ranges by 2050. Although some species are projected to expand ranges, this may be ecologically impossible due to potential barriers to dispersal, especially for species with poor dispersal ability. Only 1–13% of species showed no projected reductions in their current range under bioclimatic scenarios. An effective way to facilitate range shift for dispersal‐limited species is to improve landscape connectivity. If current trends in environmental change continue and species cannot expand their ranges into new areas, then the majority of bat species in SEA may show decreases in range size and increased extinction risk within the next century.  相似文献   
295.
Bone tissue has an exceptional quality to regenerate to native tissue in response to injury. However, the fracture repair process requires mechanical stability or a viable biological microenvironment or both to ensure successful healing to native tissue. An improved understanding of the molecular and cellular events that occur during bone repair and remodeling has led to the development of biologic agents that can augment the biological microenvironment and enhance bone repair. Orthobiologics, including stem cells, osteoinductive growth factors, osteoconductive matrices, and anabolic agents, are available clinically for accelerating fracture repair and treatment of compromised bone repair situations like delayed unions and nonunions. Preclinical and clinical studies using biologic agents like recombinant bone morphogenetic proteins have demonstrated an efficacy similar or better than that of autologous bone graft in acute fracture healing. A lack of standardized outcome measures for comparison of biologic agents in clinical fracture repair trials, frequent off-label use, and a limited understanding of the biological activity of these agents at the bone repair site have limited their efficacy in clinical applications.  相似文献   
296.
297.
Listeria monocytogenes is an intracellular food-borne pathogen causing listeriosis in humans. This bacterium deploys an arsenal of virulence factors that act in concert to promote cellular infection. Bacterial surface proteins are of primary importance in the process of host cell invasion. They interact with host cellular receptors, inducing/modulating specific cellular responses. We previously identified Vip, a Listeria surface protein covalently attached to the bacterial cell wall acting as a key virulence factor. We have shown that Vip interacts with Gp96 localized at the surface of host cells during invasion and that this interaction is critical for a successful infection in vivo. To better understand the importance of Vip-Gp96 interaction during infection, we aimed to characterize this interaction at the molecular level. Here we demonstrate that, during infection, L. monocytogenes triggers the cellular redistribution of Gp96, inducing its exposure at the cell surface. Upon infection, Gp96 N-terminal domain is exposed to the extracellular milieu in L2071 fibroblasts and interacts with Vip expressed by Listeria. We identified Gp96 (Asp1–Leu170) as sufficient to interact with Vip; however, we also showed that the region Tyr179–Leu390 of Gp96 is important for the interaction. Our findings unravel the Listeria-induced surface expression of Gp96 and the topology of its insertion on the plasma membrane and improve our knowledge on the Vip-Gp96 interaction during Listeria infection.  相似文献   
298.
299.
300.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号