首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13720篇
  免费   1089篇
  14809篇
  2023年   132篇
  2022年   266篇
  2021年   475篇
  2020年   300篇
  2019年   368篇
  2018年   459篇
  2017年   376篇
  2016年   581篇
  2015年   884篇
  2014年   879篇
  2013年   1035篇
  2012年   1251篇
  2011年   1140篇
  2010年   730篇
  2009年   589篇
  2008年   751篇
  2007年   725篇
  2006年   624篇
  2005年   531篇
  2004年   499篇
  2003年   414篇
  2002年   370篇
  2001年   135篇
  2000年   133篇
  1999年   112篇
  1998年   103篇
  1997年   72篇
  1996年   57篇
  1995年   52篇
  1994年   40篇
  1993年   47篇
  1992年   46篇
  1991年   57篇
  1990年   39篇
  1989年   30篇
  1988年   33篇
  1987年   40篇
  1986年   32篇
  1985年   31篇
  1984年   40篇
  1983年   27篇
  1982年   25篇
  1981年   16篇
  1980年   20篇
  1979年   23篇
  1976年   15篇
  1975年   16篇
  1974年   19篇
  1973年   16篇
  1972年   22篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
111.
The adaptation of plants to particular soil types has long intrigued biologists. Gypsum soils occupy large areas in many regions of the world and host a striking biological diversity, but their vegetation has been much less studied than that developing over serpentine or saline soils. Herein, we review all aspects of plant life on gypsum ecosystems, discuss the main processes driving their structure and functioning, and highlight the main conservation threats that they face. Plant communities in gypsum habitats typically show distinctive bands at very small spatial scales, which are mainly determined by topography. Plants living on gypsum soils can be classified into three categories: (i) wide gypsophiles are specialists that can penetrate the physical soil crust during early life stages and have physiological adjustments to cope with the chemical limitations imposed by gypsum soils; (ii) narrow gypsophiles are refugee plants which successfully deal with the physical soil crust and can tolerate these chemical limitations but do not show specific adaptations for this type of soils; and (iii) gypsovags are non‐specialist gypsum plants that can only thrive in gypsum soils when the physical crust is absent or reduced. Their ability to survive in gypsum soils may also be mediated by below‐ground interactions with soil microorganisms. Gypsophiles and gypsovags show efficient germination at low temperatures, seed and fruit heteromorphism within and among populations, and variation in seed dormancy among plants and populations. In gypsum ecosystems, spatio‐temporal changes in the composition and structure of above‐ground vegetation are closely related to those of the soil seed bank. Biological soil crusts (BSCs) dominated by cyanobacteria, lichens and mosses are conspicuous in gypsum environments worldwide, and are important drivers of ecosystem processes such as carbon and nitrogen cycling, water infiltration and run‐off and soil stability. These organisms are also important determinants of the structure of annual plant communities living on gypsum soils. The short‐distance seed dispersal of gypsophiles is responsible for the high number of very narrow endemisms typically found in gypsum outcrops, and suggests that these species are evolutionarily old taxa due to the time they need to colonize isolated gypsum outcrops by chance. Climate change and habitat fragmentation negatively affect both plants and BSCs in gypsum habitats, and are among the major threats to these ecosystems. Gypsum habitats and specialists offer the chance to advance our knowledge on restrictive soils, and are ideal models not only to test important evolutionary questions such as tolerance to low Ca/Mg proportions in soils, but also to improve the theoretical framework of community ecology and ecosystem functioning.  相似文献   
112.
ObjectiveRisk factors for differentiated thyroid carcinoma (DTC) are poorly understood, but serum TSH levels, thyroid nodularity, and presence of autoimmunity are well-recognized factors that modulate DTC prevalence. TSH stimulates proliferation of both normal and neoplastic follicular cells. Consequently, thyroid-stimulating immunoglobulins (TSI), because of its TSH-like action, should induce DTC progression in patients with Graves’ disease (GD). The study objective was to compare the prevalence of incidental DTC in patients undergoing thyroidectomy for benign thyroid disease.MethodsThe pathology reports of 372 patients with preoperative diagnosis of euthyroid multinodular goiter (EMG) or hyperthyroidism were reviewed. Scintigraphy results and serum TSI levels were used to diagnosed either GD or hyperactive MG (HMG) to hyperthyroid subjects. Prevalence of DTC in each category was calculated using a Chi-square test.ResultsEMG, GD, and HMG were diagnosed in 221, 125, and 26 patients. There were 58 DTCs, distributed as follows [n (%)]: EMG, 49 (22.2%); GD, 8 (6.4%), and HMG, 1 (3.8%). Difference in prevalence of incidental DTC between the groups was statistically significant (p < 0.001). After adjustment for age, patients with EMG had a greater DTC prevalence than GD patients, with an OR of 4.17 (p < 0.001). Tumor size (mm, mean ± SD) was 6.92 ± 11.26, 1.97 ± 1.85, and 9.0 for EMG, GD and HMG respectively (p = 0.017).ConclusionsIncidental DTC was less prevalent in GD as compared to EMG irrespective of age. This finding may suggest a predisposition to develop DTC in patients with thyroid nodular disease and/or a potential effect of autoimmunity to protect against development of neoplastic disease.  相似文献   
113.
Transfer RNAs (tRNAs) are the macromolecules that transfer activated amino acids from aminoacyl‐tRNA synthetases to the ribosome, where they are used for the mRNA guided synthesis of proteins. Transfer RNAs are ancient molecules, perhaps even predating the existence of the translation machinery. Albeit old, these molecules are tremendously conserved, a characteristic that is well illustrated by the fact that some bacterial tRNAs are efficient and specific substrates of eukaryotic aminoacyl‐tRNA synthetases and ribosomes. Considering their ancient origin and high structural conservation, it is not surprising that tRNAs have been hijacked during evolution for functions outside of translation. These roles beyond translation include synthetic, regulatory and information functions within the cell. Here we provide an overview of the non‐canonical roles of tRNAs and their mimics in bacteria, and discuss some of the common themes that arise when comparing these different functions.  相似文献   
114.
115.
Digital radiographic imaging is increasing in veterinary practice. The use of radiation demands responsibility to maintain high image quality. Low doses are necessary because workers are requested to restrain the animal. Optimizing digital systems is necessary to avoid unnecessary exposure, causing the phenomenon known as dose creep. Homogeneous phantoms are widely used to optimize image quality and dose. We developed an automatic computational methodology to classify and quantify tissues (i.e., lung tissue, adipose tissue, muscle tissue, and bone) in canine chest computed tomography exams. The thickness of each tissue was converted to simulator materials (i.e., Lucite, aluminum, and air). Dogs were separated into groups of 20 animals each according to weight. Mean weights were 6.5 ± 2.0 kg, 15.0 ± 5.0 kg, 32.0 ± 5.5 kg, and 50.0 ± 12.0 kg, for the small, medium, large, and giant groups, respectively. The one-way analysis of variance revealed significant differences in all simulator material thicknesses (p < 0.05) quantified between groups. As a result, four phantoms were constructed for dorsoventral and lateral views. In conclusion, the present methodology allows the development of phantoms of the canine chest and possibly other body regions and/or animals. The proposed phantom is a practical tool that may be employed in future work to optimize veterinary X-ray procedures.  相似文献   
116.
117.
118.
Metallo-β-lactamases (MBLs), such as New Delhi metallo-β-lactamase (NDM-1) have spread world-wide and present a serious threat. Expression of MBLs confers resistance in Gram-negative bacteria to all classes of β-lactam antibiotics, with the exception of monobactams, which are intrinsically stable to MBLs. However, existing first generation monobactam drugs like aztreonam have limited clinical utility against MBL-expressing strains because they are impacted by serine β-lactamases (SBLs), which are often co-expressed in clinical isolates. Here, we optimized novel monobactams for stability against SBLs, which led to the identification of LYS228 (compound 31). LYS228 is potent in the presence of all classes of β-lactamases and shows potent activity against carbapenem-resistant isolates of Enterobacteriaceae (CRE).  相似文献   
119.
Reperfusion of ischemic tissue induces significant tissue damage in multiple conditions, including myocardial infarctions, stroke, and transplantation. Although not as common, the mortality rate of mesenteric ischemia/reperfusion (IR) remains >70%. Although complement and naturally occurring Abs are known to mediate significant damage during IR, the target Ags are intracellular molecules. We investigated the role of the serum protein, β2-glycoprotein I as an initiating Ag for Ab recognition and β2-glycoprotein I (β2-GPI) peptides as a therapeutic for mesenteric IR. The time course of β2-GPI binding to the tissue indicated binding and complement activation within 15 min postreperfusion. Treatment of wild-type mice with peptides corresponding to the lipid binding domain V of β2-GPI blocked intestinal injury and inflammation, including cellular influx and cytokine and eicosanoid production. The optimal therapeutic peptide (peptide 296) contained the lysine-rich region of domain V. In addition, damage and most inflammation were also blocked by peptide 305, which overlaps with peptide 296 but does not contain the lysine-rich, phospholipid-binding region. Importantly, peptide 296 retained efficacy after replacement of cysteine residues with serine. In addition, infusion of wild-type serum containing reduced levels of anti-β2-GPI Abs into Rag-1(-/-) mice prevented IR-induced intestinal damage and inflammation. Taken together, these data suggest that the serum protein β2-GPI initiates the IR-induced intestinal damage and inflammatory response and as such is a critical therapeutic target for IR-induced damage and inflammation.  相似文献   
120.
The glycosyltransferases (GTs) are an important and functionally diverse family of enzymes involved in glycan and glycoside biosynthesis. Plants have evolved large families of GTs which undertake the array of glycosylation reactions that occur during plant development and growth. Based on the Carbohydrate‐Active enZymes (CAZy) database, the genome of the reference plant Arabidopsis thaliana codes for over 450 GTs, while the rice genome (Oryza sativa) contains over 600 members. Collectively, GTs from these reference plants can be classified into over 40 distinct GT families. Although these enzymes are involved in many important plant specific processes such as cell‐wall and secondary metabolite biosynthesis, few have been functionally characterized. We have sought to develop a plant GTs clone resource that will enable functional genomic approaches to be undertaken by the plant research community. In total, 403 (88%) of CAZy defined Arabidopsis GTs have been cloned, while 96 (15%) of the GTs coded by rice have been cloned. The collection resulted in the update of a number of Arabidopsis GT gene models. The clones represent full‐length coding sequences without termination codons and are Gateway® compatible. To demonstrate the utility of this JBEI GT Collection, a set of efficient particle bombardment plasmids (pBullet) was also constructed with markers for the endomembrane. The utility of the pBullet collection was demonstrated by localizing all members of the Arabidopsis GT14 family to the Golgi apparatus or the endoplasmic reticulum (ER). Updates to these resources are available at the JBEI GT Collection website http://www.addgene.org/ .  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号