首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8913篇
  免费   798篇
  国内免费   2篇
  2024年   7篇
  2023年   82篇
  2022年   152篇
  2021年   338篇
  2020年   195篇
  2019年   248篇
  2018年   292篇
  2017年   246篇
  2016年   396篇
  2015年   621篇
  2014年   593篇
  2013年   699篇
  2012年   854篇
  2011年   773篇
  2010年   500篇
  2009年   384篇
  2008年   545篇
  2007年   462篇
  2006年   421篇
  2005年   359篇
  2004年   342篇
  2003年   291篇
  2002年   267篇
  2001年   44篇
  2000年   34篇
  1999年   46篇
  1998年   61篇
  1997年   36篇
  1996年   35篇
  1995年   28篇
  1994年   28篇
  1993年   27篇
  1992年   12篇
  1991年   25篇
  1990年   12篇
  1989年   10篇
  1988年   12篇
  1987年   23篇
  1986年   14篇
  1985年   19篇
  1984年   20篇
  1983年   17篇
  1982年   17篇
  1981年   9篇
  1980年   11篇
  1979年   14篇
  1978年   12篇
  1977年   8篇
  1976年   11篇
  1972年   9篇
排序方式: 共有9713条查询结果,搜索用时 15 毫秒
991.
992.
993.
Quiescent satellite cells sit on the surface of the muscle fibres under the basal lamina and are activated by a variety of stimuli to disengage, divide and differentiate into myoblasts that can regenerate or repair muscle fibres. Satellite cells adopt their parent's fibre type and must have some means of communication with the parent fibre. The mechanisms behind this communication are not known. We show here that satellite cells form dynamic connections with muscle fibres and other satellite cells by F‐actin based tunnelling nanotubes (TNTs). Our results show that TNTs readily develop between satellite cells and muscle fibres. Once developed, TNTs permit transport of intracellular material, and even cellular organelles such as mitochondria between the muscle fibre and satellite cells. The onset of satellite cell differentiation markers Pax‐7 and MyoD expression was slower in satellite cells cultured in the absence than in the presence of muscle cells. Furthermore physical contact between myofibre and satellite cell progeny is required to maintain subtype identity. Our data establish that TNTs constitute an integral part of myogenic cell communication and that physical cellular interaction control myogenic cell fate determination. J. Cell. Physiol. 223: 376–383, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
994.
Extracellular and intracellular mediators of inflammation, such as tumor necrosis factor alpha (TNFα) and NF‐kappaB (NF‐κB), play major roles in breast cancer pathogenesis, progression and relapse. SLUG, a mediator of the epithelial–mesenchymal transition process, is over‐expressed in CD44+/CD24? tumor initiating breast cancer cells and in basal‐like carcinoma, a subtype of aggressive breast cancer endowed with a stem cell‐like gene expression profile. Cancer stem cells also over‐express members of the pro‐inflammatory NF‐κB network, but their functional relationship with SLUG expression in breast cancer cells remains unclear. Here, we show that TNFα treatment of human breast cancer cells up‐regulates SLUG with a dependency on canonical NF‐κB/HIF1α signaling, which is strongly enhanced by p53 inactivation. Moreover, SLUG up‐regulation engenders breast cancer cells with stem cell‐like properties including enhanced expression of CD44 and Jagged‐1 in conjunction with estrogen receptor alpha down‐regulation, growth as mammospheres, and extracellular matrix invasiveness. Our results reveal a molecular mechanism whereby TNFα, a major pro‐inflammatory cytokine, imparts breast cancer cells with stem cell‐like features, which are connected to increased tumor aggressiveness. J. Cell. Physiol. 225: 682–691, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
995.
ORAI1 is the pore-forming subunit of the Ca(2+) release-activated Ca(2+) (CRAC) channel, which is responsible for store-operated Ca(2+) entry in lymphocytes. A role for ORAI1 in T cell function in vivo has been inferred from in vitro studies of T cells from human immunodeficient patients with mutations in ORAI1 and Orai1(-/-) mice, but a detailed analysis of T cell-mediated immune responses in vivo in mice lacking functional ORAI1 has been missing. We therefore generated Orai1 knock-in mice (Orai1(KI/KI)) expressing a nonfunctional ORAI1-R93W protein. Homozygosity for the equivalent ORAI1-R91W mutation abolishes CRAC channel function in human T cells resulting in severe immunodeficiency. Homozygous Orai1(KI/KI) mice die neonatally, but Orai1(KI/KI) fetal liver chimeric mice are viable and show normal lymphocyte development. T and B cells from Orai1(KI/KI) mice display severely impaired store-operated Ca(2+) entry and CRAC channel function resulting in a strongly reduced expression of several key cytokines including IL-2, IL-4, IL-17, IFN-γ, and TNF-α in CD4(+) and CD8(+) T cells. Cell-mediated immune responses in vivo that depend on Th1, Th2, and Th17 cell function were severely attenuated in ORAI1-deficient mice. Orai1(KI/KI) mice lacked detectable contact hypersensitivity responses and tolerated skin allografts significantly longer than wild-type mice. In addition, T cells from Orai1(KI/KI) mice failed to induce colitis in an adoptive transfer model of inflammatory bowel disease. These findings reaffirm the critical role of ORAI1 for T cell function and provide important insights into the in vivo functions of CRAC channels for T cell-mediated immunity.  相似文献   
996.
Reperfusion of ischemic tissue induces significant tissue damage in multiple conditions, including myocardial infarctions, stroke, and transplantation. Although not as common, the mortality rate of mesenteric ischemia/reperfusion (IR) remains >70%. Although complement and naturally occurring Abs are known to mediate significant damage during IR, the target Ags are intracellular molecules. We investigated the role of the serum protein, β2-glycoprotein I as an initiating Ag for Ab recognition and β2-glycoprotein I (β2-GPI) peptides as a therapeutic for mesenteric IR. The time course of β2-GPI binding to the tissue indicated binding and complement activation within 15 min postreperfusion. Treatment of wild-type mice with peptides corresponding to the lipid binding domain V of β2-GPI blocked intestinal injury and inflammation, including cellular influx and cytokine and eicosanoid production. The optimal therapeutic peptide (peptide 296) contained the lysine-rich region of domain V. In addition, damage and most inflammation were also blocked by peptide 305, which overlaps with peptide 296 but does not contain the lysine-rich, phospholipid-binding region. Importantly, peptide 296 retained efficacy after replacement of cysteine residues with serine. In addition, infusion of wild-type serum containing reduced levels of anti-β2-GPI Abs into Rag-1(-/-) mice prevented IR-induced intestinal damage and inflammation. Taken together, these data suggest that the serum protein β2-GPI initiates the IR-induced intestinal damage and inflammatory response and as such is a critical therapeutic target for IR-induced damage and inflammation.  相似文献   
997.
Lymphocyte arrest and spreading on ICAM-1-expressing APCs require activation of lymphocyte LFA-1 by TCR signals, but the conformational switches of this integrin during these critical processes are still elusive. Using Ab probes that distinguish between different LFA-1 conformations, we found that, unlike strong chemokine signals, potent TCR stimuli were insufficient to trigger LFA-1 extension or headpiece opening in primary human lymphocytes. Nevertheless, LFA-1 in these TCR-stimulated T cells became highly adhesive to both anchored and mobile surface-bound ICAM-1, although it failed to bind soluble ICAM-1 with measurable affinity. Rapid rearrangement of LFA-1 by immobilized ICAM-1 switched the integrin to an open headpiece conformation within numerous scattered submicron focal dots that did not readily collapse into a peripheral LFA-1 ring. Headpiece-activated LFA-1 microclusters were enriched with talin but were devoid of TCR and CD45. Notably, LFA-1 activation by TCR signals as well as subsequent T cell spreading on ICAM-1 took place independently of cytosolic Ca(2+). In contrast to LFA-1-activating chemokine signals, TCR activation of LFA-1 readily took place in the absence of external shear forces. LFA-1 activation by TCR signals also did not require internal myosin II forces but depended on intact actin cytoskeleton. Our results suggest that potent TCR signals fail to trigger LFA-1 headpiece activation unless the integrin first gets stabilized by surface-bound ICAM-1 within evenly scattered actin-dependent LFA-1 focal dots, the quantal units of TCR-stimulated T cell arrest and spreading on ICAM-1.  相似文献   
998.
999.
1000.
The conformational study on Ac‐pSer‐Pro‐NHMe and Ac‐pThr‐Pro‐NHMe peptides has been carried out using hybrid density functional methods with the implicit solvation reaction field theory at the B3LYP/ 6‐311++G(d,p)//B3LYP/6‐31+G(d) level of theory in the gas phase and in solution (chloroform and water). For both pSer‐Pro and pThr‐Pro peptides in the gas phase and in chloroform, the most preferred conformation has the α‐helical structure for the pSer/pThr residue, the down‐puckered polyproline I structure for the Pro residue, and the cis prolyl peptide bond between the two residues, in which two hydrogen bonds between the phosphate oxygens with the backbone N? H groups seem to play a role. However, the trans conformations that have a single hydrogen bond of the phosphate oxygen with either of two backbone N? H groups become most preferred for both peptides in water. This is because the hydration free energy of the anionic oxygen of the phosphate group is expected to dramatically decrease for the cis conformation upon formation of the hydrogen bond with the backbone N? H groups. These calculated results are consistent with the observations by NMR and IR experiments, suggesting the existence of hydrogen bonds between the charged phosphoryl group and the backbone amide protons in solution. The calculated cis populations of 14.7 and 14.2% and rotational barriers of 19.87 and 20.57 kcal/mol to the cis‐to‐trans isomerization for pSer‐Pro and pThr‐Pro peptides in water, respectively, are consistent with the observed values for pSer‐Pro and pThr‐Pro containing peptides from NMR experiments. However, the hydrogen bond between the prolyl nitrogen and the following amide N? H group, which was suggested to be capable of catalyzing the prolyl isomerization, does not play a role in stabilizing the preferred transition state for the pSer/pThr‐Pro peptides in water. Instead, the amide hydrogen of the NHMe group is involved in a bifurcated hydrogen bond with the anionic oxygen and phosphoester oxygen of the phosphate group. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 330–339, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号