首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9227篇
  免费   960篇
  2023年   80篇
  2022年   116篇
  2021年   336篇
  2020年   194篇
  2019年   244篇
  2018年   285篇
  2017年   241篇
  2016年   384篇
  2015年   598篇
  2014年   579篇
  2013年   699篇
  2012年   821篇
  2011年   764篇
  2010年   495篇
  2009年   378篇
  2008年   533篇
  2007年   458篇
  2006年   405篇
  2005年   367篇
  2004年   339篇
  2003年   302篇
  2002年   270篇
  2001年   63篇
  2000年   68篇
  1999年   73篇
  1998年   84篇
  1997年   49篇
  1996年   39篇
  1995年   38篇
  1994年   34篇
  1993年   42篇
  1992年   49篇
  1991年   59篇
  1990年   41篇
  1989年   38篇
  1988年   28篇
  1987年   43篇
  1986年   30篇
  1985年   36篇
  1984年   33篇
  1983年   35篇
  1982年   36篇
  1981年   22篇
  1980年   24篇
  1979年   19篇
  1977年   19篇
  1975年   27篇
  1974年   21篇
  1973年   19篇
  1972年   24篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
A potent and specific small molecule inhibitor of farnesyl-protein transferase, L-739,749, caused rapid morphological reversion and growth inhibition of ras-transformed fibroblasts (Rat1/ras cells). Morphological reversion occurred within 18 h of L-739,749 addition. The reverted phenotype was stable for several days in the absence of inhibitor before the transformed phenotype reappeared. Cell enlargement and actin stress fiber formation accompanied treatment of both Rat1/ras and normal Rat1 cells. Significantly, inhibition of Ras processing did not correlate with the initiation or maintenance of the reverted phenotype. While a single treatment with L-739,749 was sufficient to morphologically revert Rat1/ras cells, repetitive inhibitor treatment was required to significantly reduce cell growth rate. Thus, the effects of L-739,749 on transformed cell morphology and cytoskeletal actin organization could be separated from effects on cell growth, depending on whether exposure to a farnesyl-protein transferase inhibitor was transient or repetitive. In contrast, L-739,749 had no effect on the growth, morphology, or actin organization of v-raf-transformed cells. Taken together, the results suggest that the mechanism of morphological reversion is complex and may involve farnesylated proteins that control the organization of cytoskeletal actin.  相似文献   
72.
73.
Etiolated Vicia faba seedlings were exposed to continuous red light to investigate whether changes in extracellular peroxidase activity were correlated in time and localization with changes in extension growth and/or lignin content in the subapical region of the epicotyl. Continuous red light: (a) increased extracellular peroxidase activity after a lag of ca 0.5 h, followed by a maximum peak after 2.5 h due to slightly acidic isoforms (pI = 6–6.5, according to isoelectrofocusing gels), a minimum after 4 h and a second maximum after 8 h due to acidic isoforms (pI=4–5), (b) increased lignin content and epicotyl resistance to bending after a lag of ca 4 h, i.e. simultaneously with changes in acidic extracellular peroxidase activity, and (c) reduced extension growth to a stable rate after a lag of ca 1 h, not coinciding with the kinetics of any of the extracellular peroxidase isoforms. These effects of continuous red light were at least partially mediated by phytochrome. Tissue printing and anatomical studies revealed red light effects on extracellular peroxidase activity and lignin content mainly in the outer cortical parenchyma. The results are consistent with the involvement of phyto-chrome-mediated effects on extracellular peroxidases (acidic isoforms) in the transduction chain leading to lignin responses to red light.  相似文献   
74.
Modrfication of proteins at C-terminal cysteine residue(s) by the isoprenoids farnesyl (C15) and geranylgeranyl (C20) is essential for the biological function of a number of eukaryotic proteins including fungal mating factors and the small, GTP-binding proteins of the Ras superfamily. Three distinct enzymes, conserved between yeast and mammals, have been identified that prenylate proteins: farnesyl protein transferase, geranylgeranyl protein transferase type I and geranylgeranyl protein transferase type II. Each prenyl protein transferase has its own protein substrate specificity. Much has been learned about the biology, genetics and biochemistry of protein prenylation and prenyl protein transferases through studies of eukaryotic microorganisms, particularly Saccharo-myces cerevisiae. The functional Importance of protein prenylation was first demonstrated with fungal mating factors. The initial genetic analysis of prenyl protein transferases was in S. cerewisiae with the isolation and subsequent characterization of mutations in the RAM1, RAM2, CDC43 and BET2 genes, each of which encodes a prenyl protein transferase subunit. We review here these and other studies on protein prenylation in eukaryotic microbes and how they relate to and have contributed to our knowledge about protein prenylation in all eukaryotic cells.  相似文献   
75.
Conformationally constraining selectable peptides onto a suitable scaffold that enables their conformation to be predicted or readily determined by experimental techniques would considerably boost drug discovery process by reducing the gap between the discovery of a peptide lead and the design of a peptidomimetic with a more desirable pharmacological profile. With this in mind, we designed the minibody, a 61-residue β-protein aimed at retaining some desirable features of immunogloblin variable domains, such as tolerance to sequence variability in selected regions of the protein and predictability of main chain conformation of the same regions, based on the ‘canonical structures’ model. To test the ability of the minibody scaffold to support functional sites we also designed a metal binding version of the protein by suitably choosing the sequences of its loops. The minibody was produced both by chemical syntyhesis and expression in E. coli and charactgerized by size exclusion chromatography, UV CD (circular dichroism) spectroscopy and metal binding activity. All our data supported the model, but a more detailed structural characterization of the molecule was impaired by its low soubility. We were able to overcome this problem both by further; mutagenesis of the framework and by addition of a solublizing motif. The minibody is being used to select constrained human IL-6 peptidic ligands from a library displayed on the surface of the f1 bacteriophage.  相似文献   
76.
Deletion of a region of the promiscuous plasmid pLS1 encompassing the initiation signals for the synthesis of the plasmid lagging strand led to plasmid instability in Streptococcus pneumoniae and Bacillus subtilis. This defect could not be alleviated by increasing the number of copies (measured as double-stranded plasmid DNA) to levels similar to those of the wild-type plasmid pLS1. Our results indicate that in the vicinity of, or associated with the single-stranded origin region of pLS1 there is a plasmid component involved in its stable inheritance. Homology was found between the DNA gyrase binding site within the par region of plasmid pSC101 and the pLS1 specific recombination site RSR.  相似文献   
77.
The terrestrial New Zealand fauna has developed on an ancient landmass of continental origins that has had an increasingly isolated existence since the late Mesozoic. As a continental remnant, New Zealand harbours survivors of many ancient lineages many of which were once far more widely distributed. But New Zealand's fauna also resembles that of an isolated archipelago: many higher taxa are missing; some have undergone extensive radiations in situ; and levels of endemism approach 100% in many groups. Ecologically, the fauna is characterized by frequent niche shifts, gigantism, and extended life histories with low reproductive rates, factors that make many species vulnerable to human disturbance. Data continue to amass supporting the ecophysiological as well as phylogenetic distinctiveness of the fauna. Described taxonomic diversity, even of terrestrial vertebrates, continues to increase.  相似文献   
78.
Chaetomellic acids A and B, isolated from Chaetomella acutiseta, are specific inhibitors of farnesyl-protein transferase that do not inhibit geranylgeranyl transferase type 1 or squalene synthase. Chaetomellic acids A and B are reversible inhibitors, resemble farnesyl diphosphate and probably inhibit FPTase by substituting for farnesyl diphosphate. Chaetomellic acid production appears to be widespread within the genus Chaetomella. Correspondence to: R. B. Lingham  相似文献   
79.
80.
We have compared the mutagenic properties of a T-T cyclobutane dimer in baker's yeast, Saccharomyces cerevisiae, with those in Escherichia coli by transforming each of these species with the same single-stranded shuttle vector carrying either the cis-syn or the trans-syn isomer of this UV photoproduct at a unique site. The mutagenic properties investigated were the frequency of replicational bypass of the photoproduct, the error rate of bypass, and the mutation spectrum. In SOS-induced E. coli, the cis-syn dimer was bypassed in approximately 16% of the vector molecules, and 7.6% of the bypass products had targeted mutations. In S. cerevisiae, however, bypass occurred in about 80% of these molecules, and the bypass was at least 19-fold more accurate (approximately 0.4% targeted mutations). Each of these yeast mutations was a single unique event, and none were like those in E. coli, suggesting that in fact the difference in error rate is much greater. Bypass of the trans-syn dimer occurred in about 17% of the vector molecules in both species, but with this isomer the error rate was higher in S. cerevisiae (21 to 36% targeted mutations) than in E. coli (13%). However, the spectra of mutations induced by the latter photoproduct were virtually identical in the two organisms. We conclude that bypass and error frequencies are determined both by the structure of the photoproduct-containing template and by the particular replication proteins concerned but that the types of mutations induced depend predominantly on the structure of the template. Unlike E. coli, bypass in S. cerevisiae did not require UV-induced functions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号