首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38674篇
  免费   16539篇
  国内免费   2篇
  2023年   112篇
  2022年   293篇
  2021年   847篇
  2020年   2402篇
  2019年   3976篇
  2018年   4152篇
  2017年   4352篇
  2016年   4548篇
  2015年   4745篇
  2014年   4389篇
  2013年   4959篇
  2012年   2888篇
  2011年   2466篇
  2010年   3667篇
  2009年   2292篇
  2008年   1404篇
  2007年   934篇
  2006年   843篇
  2005年   807篇
  2004年   768篇
  2003年   706篇
  2002年   609篇
  2001年   458篇
  2000年   354篇
  1999年   286篇
  1998年   130篇
  1997年   93篇
  1996年   92篇
  1995年   89篇
  1994年   89篇
  1993年   76篇
  1992年   113篇
  1991年   100篇
  1990年   116篇
  1989年   99篇
  1988年   106篇
  1987年   91篇
  1986年   95篇
  1985年   80篇
  1984年   59篇
  1983年   60篇
  1982年   45篇
  1981年   37篇
  1980年   35篇
  1979年   37篇
  1978年   35篇
  1977年   31篇
  1976年   32篇
  1974年   29篇
  1973年   26篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
121.
Space use including territoriality and spatial arrangement within a population can reveal important information on the nature, dynamics, and evolutionary maintenance of alternative strategies in color polymorphic species. Despite the prevalence of color polymorphic species as model systems in evolutionary biology, the interaction between space use and genetic structuring of morphs within populations has rarely been examined. Here, we assess the spatial and genetic structure of male throat color morphs within a population of the tawny dragon lizard, Ctenophorus decresii. Male color morphs do not differ in morphology but differ in aggressive and antipredator behaviors as well as androgen levels. Despite these behavioral and endocrine differences, we find that color morphs do not differ in territory size, with their spatial arrangement being essentially random with respect to each other. There were no differences in genetic diversity or relatedness between morphs; however, there was significant, albeit weak, genetic differentiation between morphs, which was unrelated to geographic distance between individuals. Our results indicate potential weak barriers to gene flow between some morphs, potentially due to nonrandom pre‐ or postcopulatory mate choice or postzygotic genetic incompatibilities. However, space use, spatial structure, and nonrandom mating do not appear to be primary mechanisms maintaining color polymorphism in this system, highlighting the complexity and variation in alternative strategies associated with color polymorphism.  相似文献   
122.
123.
124.
Molecular techniques provide powerful tools for studying the geographic structure of hybrid zones and the dynamics of gene exchange between incipient species. We examined allozyme variation at five loci (PGM, GPI, MDH-1, MDH-2, and LDH) for 27 populations of Palaemonetes kadiakensis from the central, coastal, and eastern regions of Texas. Central Texas populations of P. kadiakensis exhibited highly significant linkage disequilibrium and departures from Hardy-Weinberg genotype proportions. In populations with linkage disequilibrium, allelic differences at GPI defined two types of P. kadiakensis, designated A and B. Both types existed in central Texas with little or no evidence of interbreeding, whereas the populations from all other localities showed complete introgression of type B alleles into the type A gene pool. We also examined ribosomal DNA (rDNA) and mitochondrial DNA (mtDNA) variation in a subset of populations, chosen to cover a range of geographic locations and levels of linkage disequilibrium. Two groups of mtDNA haplotypes and two restriction fragment patterns for the rDNA corresponded to allozyme type A and B individuals in populations exhibiting linkage disequilibrium. In populations with ongoing hybridization, all hybrid animals (N= 15) exhibited type A mtDNA. Exhibition of type A mtDNA indicated that type A females had mated successfully with type B males, but type B females had not mated successfully with type A males. Genotype distributions suggest reduced reproduction by hybrid offspring in central Texas populations. These patterns are consistent with a mosaic model of hybrid zone dynamics.  相似文献   
125.
In this study, the first reported isolates of the genera Snowella and Woronichinia were characterized by 16S rRNA gene sequencing and morphological analysis. Phylogenetic studies and sequences for these genera were not available previously. By botanical criteria, the five isolated strains were identified as Snowella litoralis (Häyrén) Komárek et Hindák Snowella rosea (Snow) Elenkin and Woronichinia naegeliana (Unger) Elenkin. This study underlines the identification of freshly isolated cultures, since the Snowella strains lost the colony structure and were not identifiable after extended laboratory cultivation. In the 16S rRNA gene analysis, the Snowella strains formed a monophyletic cluster, which was most closely related to the Woronichinia strain. Thus, our results show that the morphology of the genera Snowella and Woronichinia was in congruence with their phylogeny, and their phylogeny seems to support the traditional botanical classification of these genera. Furthermore, the genera Snowella and Woronichinia occurred commonly and might occasionally be the most abundant cyanobacterial taxa in mainly oligotrophic and mesotrophic Finnish lakes. Woronichinia occurred frequently and also formed blooms in eutrophic Czech reservoirs.  相似文献   
126.
The chemiluminescence (CL) of bis(2,4,6‐trichlorophyenyl) oxalate with hydrogen peroxide in the present of cationic surfactant and gold nanoparticles was studied. The CL emission was obviously enhanced in the presence of surfactant at a suitable concentration, with a synergetic catalysis effect exhibited. Different sizes of gold nanoparticles (15 and 50 nm) showed different effects on CL intensity. Mechanisms of the CL reaction and sensitization effect are discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
127.
128.
129.
Aim The seagrass, Posidonia oceanica is a clonal angiosperm endemic to the Mediterranean Sea. Previous studies have suggested that clonal growth is far greater than sexual recruitment and thus leads to low clonal diversity within meadows. However, recently developed microsatellite markers indicate that there are many different genotypes, and therefore many distinct clones present. The low resolution of markers used in the past limited our ability to estimate clonality and assess the individual level. New high‐resolution dinucleotide microsatellites now allow genetically distinct individuals to be identified, enabling more reliable estimation of population genetic parameters across the Mediterranean Basin. We investigated the biogeography and dispersal of P. oceanica at various spatial scales in order to assess the influence of different evolutionary factors shaping the distribution of genetic diversity in this species. Location The Mediterranean. Methods We used seven hypervariable microsatellite markers, in addition to the five previously existing markers, to describe the spatial distribution of genetic variability in 34 meadows spread throughout the Mediterranean, on the basis of an average of 35.6 (± 6.3) ramets sampled. Results At the scale of the Mediterranean Sea as a whole, a strong east–west cleavage was detected (amova) . These results are in line with those obtained using previous markers. The new results showed the presence of a putative secondary contact zone at the Siculo‐Tunisian Strait, which exhibited high allelic richness and shared alleles absent from the eastern and western basins. F statistics (pairwise θ ranges between 0.09 and 0.71) revealed high genetic structure between meadows, both at a small scale (about 2 to 200 km) and at a medium scale within the eastern and western basins, independent of geographical distance. At the intrameadow scale, significant spatial autocorrelation in six out of 15 locations revealed that dispersal can be restricted to the scale of a few metres. Main conclusions A stochastic pattern of effective migration due to low population size, turnover and seed survival is the most likely explanation for this pattern of highly restricted gene flow, despite the importance of an a priori seed dispersal potential. The east–west cleavage probably represents the outline of vicariance caused by the last Pleistocene ice age and maintained to this day by low gene flow. These results emphasize the diversity of evolutionary processes shaping the genetic structure at different spatial scales.  相似文献   
130.
The whitefly Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) is a species complex, and its systematic classification requires controlled crossing experiments among its genetic groups. Accurate information on pre‐copulation intervals, copulation frequencies, and initial frequency of egg fertilization of newly emerged adults is critical for designing procedures for collecting the virgin adults necessary for these experiments. In the literature, considerable variation is reported between B. tabaci populations, with respect to the length of the pre‐copulation interval and the initial frequency of egg fertilization. Here, we used a video‐recording method to observe continuously the copulation behaviour of the Mediterranean/Asia Minor/Africa (B biotype) and the Asia II (ZHJ1 biotype) groups of B. tabaci. We also recorded the initial frequency of egg fertilization, as determined by the sex of the progeny. When adults were caged in female–male pairs on leaves of cotton plants, the earliest copulation events occurred 2–6 h after emergence; at 12 h after emergence 56–84% of the females had copulated at least once, and nearly all (92–100%) had copulated at least once by 36 h after emergence. Both females and males copulated repeatedly. Approximately 80 and 20% of copulation events occurred during the photophase and scotophase, respectively. By 72 h post‐emergence, the females of the B and ZHJ1 biotypes had copulated on average 6.1 and 3.9 times, respectively. When adults were caged in groups on plants 1–13 h after emergence, 30–35% of the eggs deposited during this period were fertilized, and approximately 90% of females were fertilized by the end of the 13 h. Although timing of copulation differed in detail between the two genetic groups, the results demonstrate that B. tabaci adults can start to copulate as early as 2–6 h post‐emergence and the majority of females can become fertilized on the day that they emerge.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号