首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8444篇
  免费   733篇
  2023年   79篇
  2022年   175篇
  2021年   324篇
  2020年   189篇
  2019年   241篇
  2018年   273篇
  2017年   232篇
  2016年   370篇
  2015年   567篇
  2014年   546篇
  2013年   675篇
  2012年   789篇
  2011年   725篇
  2010年   461篇
  2009年   349篇
  2008年   493篇
  2007年   435篇
  2006年   385篇
  2005年   334篇
  2004年   311篇
  2003年   276篇
  2002年   234篇
  2001年   41篇
  2000年   28篇
  1999年   42篇
  1998年   64篇
  1997年   34篇
  1996年   33篇
  1995年   27篇
  1994年   23篇
  1993年   25篇
  1992年   11篇
  1991年   25篇
  1990年   17篇
  1989年   19篇
  1988年   23篇
  1987年   25篇
  1986年   20篇
  1985年   31篇
  1984年   23篇
  1983年   25篇
  1982年   20篇
  1981年   11篇
  1980年   14篇
  1979年   14篇
  1978年   10篇
  1977年   9篇
  1976年   7篇
  1972年   13篇
  1970年   7篇
排序方式: 共有9177条查询结果,搜索用时 0 毫秒
91.
Numerous studies have demonstrated that fertilization with nutrients such as nitrogen, phosphorus, and potassium increases plant productivity in both natural and managed ecosystems, demonstrating that primary productivity is nutrient limited in most terrestrial ecosystems. In contrast, it has been demonstrated that heterotrophic microbial communities in soil are primarily limited by organic carbon or energy. While this concept of contrasting limitations, that is, microbial carbon and plant nutrient limitation, is based on strong evidence that we review in this paper, it is often ignored in discussions of ecosystem response to global environment changes. The plant‐centric perspective has equated plant nutrient limitations with those of whole ecosystems, thereby ignoring the important role of the heterotrophs responsible for soil decomposition in driving ecosystem carbon storage. To truly integrate carbon and nutrient cycles in ecosystem science, we must account for the fact that while plant productivity may be nutrient limited, the secondary productivity by heterotrophic communities is inherently carbon limited. Ecosystem carbon cycling integrates the independent physiological responses of its individual components, as well as tightly coupled exchanges between autotrophs and heterotrophs. To the extent that the interacting autotrophic and heterotrophic processes are controlled by organisms that are limited by nutrient versus carbon accessibility, respectively, we propose that ecosystems by definition cannot be ‘limited’ by nutrients or carbon alone. Here, we outline how models aimed at predicting non‐steady state ecosystem responses over time can benefit from dissecting ecosystems into the organismal components and their inherent limitations to better represent plant–microbe interactions in coupled carbon and nutrient models.  相似文献   
92.
Enhancing the resilience of corals to rising temperatures is now a matter of urgency, leading to growing efforts to explore the use of heat tolerant symbiont species to improve their thermal resilience. The notion that adaptive traits can be retained by transferring the symbionts alone, however, challenges the holobiont concept, a fundamental paradigm in coral research. Holobiont traits are products of a specific community (holobiont) and all its co‐evolutionary and local adaptations, which might limit the retention or transference of holobiont traits by exchanging only one partner. Here we evaluate how interchanging partners affect the short‐ and long‐term performance of holobionts under heat stress using clonal lineages of the cnidarian model system Aiptasia (host and Symbiodiniaceae strains) originating from distinct thermal environments. Our results show that holobionts from more thermally variable environments have higher plasticity to heat stress, but this resilience could not be transferred to other host genotypes through the exchange of symbionts. Importantly, our findings highlight the role of the host in determining holobiont productivity in response to thermal stress and indicate that local adaptations of holobionts will likely limit the efficacy of interchanging unfamiliar compartments to enhance thermal tolerance.  相似文献   
93.
94.
95.
96.
97.
98.
99.
Phenotypic divergence among natural populations can be explained by natural selection or by neutral processes such as drift. Many examples in the literature compare putatively neutral (FST) and quantitative genetic (QST) differentiation in multiple populations to assess their evolutionary signature and identify candidate traits involved with local adaptation. Investigating these signatures in closely related or recently diversified species has the potential to shed light on the divergence processes acting at the interspecific level. Here, we conducted this comparison in two subspecies of snapdragon plants (eight populations of Antirrhinum majus pseudomajus and five populations of A. m. striatum) in a common garden experiment. We also tested whether altitude was involved with population phenotypic divergence. Our results identified candidate phenological and morphological traits involved with local adaptation. Most of these traits were identified in one subspecies but not the other. Phenotypic divergence increased with altitude for a few biomass‐related traits, but only in A. m. striatum. These traits therefore potentially reflect A. m. striatum adaptation to altitude. Our findings imply that adaptive processes potentially differ at the scale of A. majus subspecies.  相似文献   
100.
Knowledge of zooplankton in situ diet is critical for accurate assessment of marine ecosystem function and structure, but due to methodological constraints, there is still a limited understanding of ecological networks in marine ecosystems. Here, we used DNA‐metabarcoding to study trophic interactions, with the aim to unveil the natural diet of zooplankton species under temporal variation of food resources. Several target consumers, including copepods and cladocerans, were investigated by sequencing 16S rRNA and 18S rRNA genes to identify prokaryote and eukaryote potential prey present in their guts. During the spring phytoplankton bloom, we found a dominance of diatom and dinoflagellate trophic links to copepods. During the summer period, zooplankton including cladocerans showed a more diverse diet dominated by cyanobacteria and heterotrophic prey. Our study suggests that copepods present trophic plasticity, changing their natural diet over seasons, and adapting their feeding strategies to the available prey spectrum, with some species being more selective. We did not find a large overlap of prey consumed by copepods and cladocerans, based on prey diversity found in their guts, suggesting that they occupy different roles in the trophic web. This study represents the first molecular approach to investigate several zooplankton–prey associations under seasonal variation, and highlights how, unlike other techniques, the diversity coverage is high when using DNA, allowing the possibility to detect a wide range of trophic interactions in plankton communities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号