首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8303篇
  免费   726篇
  国内免费   1篇
  9030篇
  2024年   10篇
  2023年   90篇
  2022年   182篇
  2021年   327篇
  2020年   189篇
  2019年   240篇
  2018年   276篇
  2017年   230篇
  2016年   367篇
  2015年   566篇
  2014年   546篇
  2013年   672篇
  2012年   781篇
  2011年   724篇
  2010年   460篇
  2009年   350篇
  2008年   491篇
  2007年   426篇
  2006年   379篇
  2005年   329篇
  2004年   309篇
  2003年   268篇
  2002年   233篇
  2001年   40篇
  2000年   23篇
  1999年   38篇
  1998年   60篇
  1997年   34篇
  1996年   31篇
  1995年   25篇
  1994年   25篇
  1993年   27篇
  1992年   10篇
  1991年   19篇
  1990年   12篇
  1989年   10篇
  1988年   12篇
  1987年   17篇
  1986年   11篇
  1985年   18篇
  1984年   20篇
  1983年   17篇
  1982年   18篇
  1981年   9篇
  1980年   10篇
  1979年   14篇
  1978年   8篇
  1977年   8篇
  1976年   8篇
  1972年   8篇
排序方式: 共有9030条查询结果,搜索用时 15 毫秒
91.
Androgens are important regulators of bone mass but the relative importance of testosterone (T) versus dihydrotestosterone (DHT) for the activation of the androgen receptor (AR) in bone is unknown. 5α-reductase is responsible for the irreversible conversion of T to the more potent AR activator DHT. There are two well established isoenzymes of 5α-reductase (type 1 and type 2), encoded by separate genes (Srd5a1 and Srd5a2). 5α-reductase type 2 is predominantly expressed in male reproductive tissues whereas 5α-reductase type 1 is highly expressed in liver and moderately expressed in several other tissues including bone. The aim of the present study was to investigate the role of 5α-reductase type 1 for bone mass using Srd5a1−/− mice. Four-month-old male Srd5a1 −/− mice had reduced trabecular bone mineral density (−36%, p<0.05) and cortical bone mineral content (−15%, p<0.05) but unchanged serum androgen levels compared with wild type (WT) mice. The cortical bone dimensions were reduced in the male Srd5a1 −/− mice as a result of a reduced cortical periosteal circumference compared with WT mice. T treatment increased the cortical periosteal circumference (p<0.05) in orchidectomized WT mice but not in orchidectomized Srd5a1 −/− mice. Male Srd5a1 −/− mice demonstrated a reduced forelimb muscle grip strength compared with WT mice (p<0.05). Female Srd5a1 −/− mice had slightly increased cortical bone mass associated with elevated circulating levels of androgens. In conclusion, 5α-reductase type 1 inactivated male mice have reduced bone mass and forelimb muscle grip strength and we propose that these effects are due to lack of 5α-reductase type 1 expression in bone and muscle. In contrast, the increased cortical bone mass in female Srd5a1 −/− mice, is an indirect effect mediated by elevated circulating androgen levels.  相似文献   
92.
In the past decade, many initiatives were taken for the development of antibodies for proteome-wide studies, as well as characterisation and validation of clinically relevant disease biomarkers. Phage display offers many advantages compared to antibody generation by immunisation because it is an unlimited resource of affinity reagents without batch-to-batch variation and is also amendable for high throughput in contrast to conventional hybridoma technology. One of the major bottlenecks to proteome-wide binder selection is the limited supply of suitable target antigens representative of the human proteome. Here, we provide proof of principle of using easily accessible, cancer-associated protein epitope signature tags (PrESTs), routinely generated within the Human Protein Atlas project, as surrogate antigens for full-length proteins in phage selections for the retrieval of target-specific binders. These binders were subsequently tested in western blot, immunohistochemistry and protein microarray application to demonstrate their functionality.  相似文献   
93.

Background  

Tissue morphogenesis is a complex process whereby tissue structures self-assemble by the aggregate behaviors of independently acting cells responding to both intracellular and extracellular cues in their environment. During embryonic development, morphogenesis is particularly important for organizing cells into tissues, and although key regulatory events of this process are well studied in isolation, a number of important systems-level questions remain unanswered. This is due, in part, to a lack of integrative tools that enable the coupling of biological phenomena across spatial and temporal scales. Here, we present a new computational framework that integrates intracellular signaling information with multi-cell behaviors in the context of a spatially heterogeneous tissue environment.  相似文献   
94.
Time-lapse microscopy of human lung cancer (H460) cells showed that the endogenous cannabinoid anandamide (AEA), the phyto-cannabinoid Δ-9-tetrahydrocannabinol (THC) and a synthetic cannabinoid HU 210 all caused morphological changes characteristic of apoptosis. Janus green assays of H460 cell viability showed that AEA and THC caused significant increases in OD 595 nm at lower concentrations (10-50 μM) and significant decreases at 100 μM, whilst HU 210 caused significant decreases at all concentrations. In rat heart mitochondria, all three ligands caused significant decreases in oxygen consumption and mitochondrial membrane potential. THC and HU 210 caused significant increases in mitochondrial hydrogen peroxide production, whereas AEA was without significant effect. All three ligands induced biphasic changes in either mitochondrial complex I activity and/or mitochondrial complex II-III activity. These data demonstrate that AEA, THC, and HU 210 are all able to cause changes in integrated mitochondrial function, directly, in the absence of cannabinoid receptors.  相似文献   
95.
Photobiomodulation (PBM) is a non‐plant‐cell manipulation through a transfer of energy by means of light sources at the non‐ablative or thermal intensity. Authors showed that cytochrome‐c‐oxidase (complex IV) is the specific chromophore's target of PBM at the red (600‐700 nm) and NIR (760‐900 nm) wavelength regions. Recently, it was suggested that the infrared region of the spectrum could influence other chromospheres, despite the interaction by wavelengths higher than 900 nm with mitochondrial chromophores was not clearly demonstrated. We characterized the interaction between mitochondria respiratory chain, malate dehydrogenase, a key enzyme of Krebs cycle, and 3‐hydroxyacyl‐CoA dehydrogenase, an enzyme involved in the β‐oxidation (two mitochondrial matrix enzymes) with the 1064 nm Nd:YAG (100mps and 10 Hz frequency mode) irradiated at the average power density of 0.50, 0.75, 1.00, 1.25 and 1.50 W/cm2 to generate the respective fluences of 30, 45, 60, 75 and 90 J/cm2. Our results show the effect of laser light on the transmembrane mitochondrial complexes I, III, IV and V (adenosine triphosphate synthase) (window effects), but not on the extrinsic mitochondrial membrane complex II and mitochondria matrix enzymes. The effect is not due to macroscopical thermal change. An interaction of this wavelength with the Fe‐S proteins and Cu‐centers of respiratory complexes and with the water molecules could be supposed.   相似文献   
96.
Evidence suggests that ciliated sensory structures on the feeding palps of spionid polychaetes may function as chemoreceptors to modulate deposit-feeding activity. To investigate the probable sensory nature of these ciliated cells, we used immunohistochemistry, epi-fluorescence, and confocal laser scanning microscopy to label and image sensory cells, nerves, and their organization relative to the anterior central nervous system in several spionid polychaete species. Antibodies directed against acetylated alphatubulin were used to label the nervous system and detail the innervation of palp sensory cells in all species. In addition, the distribution of serotonin (5-HT) and FMRFamide-like immunoreactivity was compared in the spionid polychaetes Dipolydora quadrilobata and Pygospio elegans. The distribution of serotonin immunoreactivity was also examined in the palps of Polydora cornuta and Streblospio benedicti. Serotonin immunoreactivity was concentrated in cells underlying the food groove of the palps, in the palp nerves, and in the cerebral ganglion. FMRFamide-like immunoreactivity was associated with the cerebral ganglia, nuchal organs and palp nerves, and also with the perikarya of ciliated sensory cells on the palps.  相似文献   
97.
Chronic progressive external ophthalmoplegia (CPEO) is common in mitochondrial disorders and is frequently associated with multiple mtDNA deletions. The onset is typically in adulthood, and affected subjects can also present with general muscle weakness. The underlying genetic defects comprise autosomal-dominant or recessive mutations in several nuclear genes, most of which play a role in mtDNA replication. Next-generation sequencing led to the identification of compound-heterozygous RNASEH1 mutations in two singleton subjects and a homozygous mutation in four siblings. RNASEH1, encoding ribonuclease H1 (RNase H1), is an endonuclease that is present in both the nucleus and mitochondria and digests the RNA component of RNA-DNA hybrids. Unlike mitochondria, the nucleus harbors a second ribonuclease (RNase H2). All affected individuals first presented with CPEO and exercise intolerance in their twenties, and these were followed by muscle weakness, dysphagia, and spino-cerebellar signs with impaired gait coordination, dysmetria, and dysarthria. Ragged-red and cytochrome c oxidase (COX)-negative fibers, together with impaired activity of various mitochondrial respiratory chain complexes, were observed in muscle biopsies of affected subjects. Western blot analysis showed the virtual absence of RNase H1 in total lysate from mutant fibroblasts. By an in vitro assay, we demonstrated that altered RNase H1 has a reduced capability to remove the RNA from RNA-DNA hybrids, confirming their pathogenic role. Given that an increasing amount of evidence indicates the presence of RNA primers during mtDNA replication, this result might also explain the accumulation of mtDNA deletions and underscores the importance of RNase H1 for mtDNA maintenance.  相似文献   
98.

Background

Enterohemorrhagic Escherichia coli (EHEC) O157:H7, the causative agent of hemorrhagic colitis and the hemolytic uremic syndrome (HUS), produces long bundles of type IV pili (TFP) called hemorrhagic coli pili (HCP). HCP are capable of mediating several phenomena associated with pathogenicity: i) adherence to human and bovine epithelial cells; ii) invasion of epithelial cells; iii) hemagglutination of rabbit erythrocytes; iv) biofilm formation; v) twitching motility; and vi) specific binding to laminin and fibronectin. HCP are composed of a 19 kDa pilin subunit (HcpA) encoded by the hcpA chromosomal gene (called prepilin peptidase-dependent gene [ppdD] in E. coli K-12).

Methodology/Principal Findings

In this study we investigated the potential role of HCP of E. coli O157:H7 strain EDL933 in activating the release of pro- and anti-inflammatory cytokines from a variety of host epithelial cells. We found that purified HCP and a recombinant HcpA protein induced significant release of IL-8 and TNF-α, from cultured polarized intestinal cells (T84 and HT-29 cells) and non-intestinal HeLa cells. Levels of proinflammatory IL-8 and TNF-α, but not IL-2, IL6, or IL-10 cytokines, were increased in the presence of HCP and recombinant HcpA after 6 h of incubation with ≥50 ng/ml of protein, suggesting that stimulation of IL-8 and TNF-α are dose and time-dependent. In addition, we also demonstrated that flagella are potent inducers of cytokine production. Furthermore, MAPK activation kinetics studies showed that EHEC induces p38 phosphorylation under HCP-producing conditions, and ERK1/2 and JNK activation was detectable after 3 h of EHEC infection. HT-29 cells were stimulated with epidermal growth factor stimulation of HT-29 cells for 30 min leading to activation of three MAPKs.

Conclusions/Significance

The HcpA pilin monomer of the HCP produced by EHEC O157:H7 is a potent inducer of IL-8 and TNF-α release, an event which could play a significant role in the pathogenesis of hemorrhagic colitis caused by this pathogen.  相似文献   
99.
Boron neutron capture therapy (BNCT) is based on selective accumulation of 10B carriers in tumor followed by neutron irradiation. We previously proved the therapeutic success of BNCT mediated by the boron compounds boronophenylalanine and sodium decahydrodecaborate (GB-10) in the hamster cheek pouch oral cancer model. Based on the clinical relevance of the boron carrier sodium borocaptate (BSH) and the knowledge that the most effective way to optimize BNCT is to improve tumor boron targeting, the specific aim of this study was to perform biodistribution studies of BSH in the hamster cheek pouch oral cancer model and evaluate the feasibility of BNCT mediated by BSH at nuclear reactor RA-3. The general aim of these studies is to contribute to the knowledge of BNCT radiobiology and optimize BNCT for head and neck cancer. Sodium borocaptate (50 mg 10B/kg) was administered to tumor-bearing hamsters. Groups of 3–5 animals were killed humanely at nine time-points, 3–12 h post-administration. Samples of blood, tumor, precancerous pouch tissue, normal pouch tissue and other clinically relevant normal tissues were processed for boron measurement by optic emission spectroscopy. Tumor boron concentration peaked to therapeutically useful boron concentration values of 24–35 ppm. The boron concentration ratio tumor/normal pouch tissue ranged from 1.1 to 1.8. Pharmacokinetic curves showed that the optimum interval between BSH administration and neutron irradiation was 7–11 h. It is concluded that BNCT mediated by BSH at nuclear reactor RA-3 would be feasible.  相似文献   
100.
Currently, the biofortification of crops like wheat with micronutrients such as iron (Fe) and zinc (Zn) is extremely important due to the deficiencies of these micronutrients in the human diet and in soils. Agronomic biofortification with Fe and Zn can be done through different exogenous strategies such as soil application, foliar spraying, and seed priming. However, the excess of these micronutrients can be detrimental to the plants. Therefore, in the last decade, a high number of studies focused on the evaluation of their phytotoxic effects to define the best strategies for biofortification of bread wheat. In this study, we investigated the effects of seed priming with different dosages (1 mg L?1 to 8 mg L?1) of Fe and/or Zn in germination, mitosis and yield of bread wheat cv. ‘Jordão’ when compared with control. Overall, our results showed that: micronutrient dosages higher than 4 mg L?1 negatively affect the germination; Fe and/or Zn concentrations higher than 2 mg L?1 significantly decrease the mitotic index and increase the percentage of dividing cells with anomalies; treatments performed with 8 mg L?1 of Fe and/or 8 mg L?1 Zn caused negative effects in germination, mitosis and grain yield. Moreover, seed priming with 2 mg L?1 Fe?+?2 mg L?1 Zn has been shown to be non-cytotoxic, ensuring a high rate of germination (80%) and normal dividing cells (90%) as well as improving tillering and grain yield. This work revealed that seed priming with Fe and Zn micronutrients constitutes a useful and alternative approach for the agronomic biofortification of bread wheat.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号