首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8613篇
  免费   765篇
  国内免费   2篇
  9380篇
  2024年   9篇
  2023年   92篇
  2022年   181篇
  2021年   326篇
  2020年   192篇
  2019年   247篇
  2018年   278篇
  2017年   235篇
  2016年   380篇
  2015年   572篇
  2014年   565篇
  2013年   685篇
  2012年   803篇
  2011年   747篇
  2010年   474篇
  2009年   356篇
  2008年   505篇
  2007年   449篇
  2006年   394篇
  2005年   345篇
  2004年   327篇
  2003年   279篇
  2002年   249篇
  2001年   44篇
  2000年   30篇
  1999年   48篇
  1998年   65篇
  1997年   37篇
  1996年   34篇
  1995年   30篇
  1994年   26篇
  1993年   30篇
  1992年   19篇
  1991年   23篇
  1990年   15篇
  1989年   21篇
  1988年   18篇
  1987年   24篇
  1986年   18篇
  1985年   23篇
  1984年   22篇
  1983年   18篇
  1982年   17篇
  1981年   10篇
  1980年   12篇
  1979年   16篇
  1978年   9篇
  1976年   8篇
  1974年   7篇
  1972年   9篇
排序方式: 共有9380条查询结果,搜索用时 15 毫秒
111.
Crystal structure of a bacterial albumin-binding domain at 1.4 A resolution   总被引:1,自引:0,他引:1  
Cramer JF  Nordberg PA  Hajdu J  Lejon S 《FEBS letters》2007,581(17):3178-3182
The albumin-binding domain, or GA module, of the peptostreptococcal albumin-binding protein expressed in pathogenic strains of Finegoldia magna is believed to be responsible for the virulence and increased growth rate of these strains. Here we present the 1.4A crystal structure of this domain, and compare it with the crystal structure of the GA-albumin complex. An analysis of protein-protein interactions in the two crystals, and the presence of multimeric GA species in solution, indicate the GA module is "sticky", and is capable of forming contacts with a range of protein surfaces. This might lead to interactions with different host proteins.  相似文献   
112.
Chronic progressive external ophthalmoplegia (CPEO) is common in mitochondrial disorders and is frequently associated with multiple mtDNA deletions. The onset is typically in adulthood, and affected subjects can also present with general muscle weakness. The underlying genetic defects comprise autosomal-dominant or recessive mutations in several nuclear genes, most of which play a role in mtDNA replication. Next-generation sequencing led to the identification of compound-heterozygous RNASEH1 mutations in two singleton subjects and a homozygous mutation in four siblings. RNASEH1, encoding ribonuclease H1 (RNase H1), is an endonuclease that is present in both the nucleus and mitochondria and digests the RNA component of RNA-DNA hybrids. Unlike mitochondria, the nucleus harbors a second ribonuclease (RNase H2). All affected individuals first presented with CPEO and exercise intolerance in their twenties, and these were followed by muscle weakness, dysphagia, and spino-cerebellar signs with impaired gait coordination, dysmetria, and dysarthria. Ragged-red and cytochrome c oxidase (COX)-negative fibers, together with impaired activity of various mitochondrial respiratory chain complexes, were observed in muscle biopsies of affected subjects. Western blot analysis showed the virtual absence of RNase H1 in total lysate from mutant fibroblasts. By an in vitro assay, we demonstrated that altered RNase H1 has a reduced capability to remove the RNA from RNA-DNA hybrids, confirming their pathogenic role. Given that an increasing amount of evidence indicates the presence of RNA primers during mtDNA replication, this result might also explain the accumulation of mtDNA deletions and underscores the importance of RNase H1 for mtDNA maintenance.  相似文献   
113.
Monomeric G-proteins, also referred to as small GTPases, function as biological hubs being activated by extracellular stimuli and regulate downstream signalling events, which result in different cellular responses. The importance of these mechanisms is mirrored by the fact that several pathological conditions, including allergic asthma, are associated with derailed GTPases signalling. For this reason attention has been focused on the role of monomeric G-proteins and their effectors in airway (patho)physiology. In this article we review our current knowledge on the regulation and functions of Ras and Rho GTPase signalling under physiological and pathophysiological conditions in the pulmonary system. Based on recent findings concerning novel regulatory proteins for Ras family members, we further discuss potential future directions for therapeutical interventions in asthma.  相似文献   
114.
Dental caries is a polymicrobial disease and complicated to treat. Understanding the microbiota responses to treatment from different individuals is a key factor in developing effective treatments. The aim of this study was to investigate the 24-h posttreatment effect of two oral antiseptics (chlorhexidine and Listerine) on species composition of microplate plaque biofilms that had been initiated from the saliva of five different donors and grown in both 0.15% and 0.5% sucrose. Plaque composition was analyzed using checkerboard DNA : DNA hybridization analysis, which comprised of a panel of 40 species associated with oral health and disease. The supernatant pH of the plaques grown in 0.15% sucrose ranged from 4.3 to 6 and in 0.5% sucrose, it ranged from 3.8 to 4. Plaque biomass was largely unaffected by either antiseptic. Each donor had a different salivary microbial profile, differentiating according to the prevalence of either caries or periodontal/anaerobic pathogens. Despite similar plaque microbiota compositions being elicited through the sucrose growth conditions, microbiota responses to chlorhexidine and Listerine differentiated according to the donor. These findings indicate that efficacious caries treatments would depend on the responses of an individual's microbiota, which may differ from person to person.  相似文献   
115.
Photobiomodulation (PBM) is a non‐plant‐cell manipulation through a transfer of energy by means of light sources at the non‐ablative or thermal intensity. Authors showed that cytochrome‐c‐oxidase (complex IV) is the specific chromophore's target of PBM at the red (600‐700 nm) and NIR (760‐900 nm) wavelength regions. Recently, it was suggested that the infrared region of the spectrum could influence other chromospheres, despite the interaction by wavelengths higher than 900 nm with mitochondrial chromophores was not clearly demonstrated. We characterized the interaction between mitochondria respiratory chain, malate dehydrogenase, a key enzyme of Krebs cycle, and 3‐hydroxyacyl‐CoA dehydrogenase, an enzyme involved in the β‐oxidation (two mitochondrial matrix enzymes) with the 1064 nm Nd:YAG (100mps and 10 Hz frequency mode) irradiated at the average power density of 0.50, 0.75, 1.00, 1.25 and 1.50 W/cm2 to generate the respective fluences of 30, 45, 60, 75 and 90 J/cm2. Our results show the effect of laser light on the transmembrane mitochondrial complexes I, III, IV and V (adenosine triphosphate synthase) (window effects), but not on the extrinsic mitochondrial membrane complex II and mitochondria matrix enzymes. The effect is not due to macroscopical thermal change. An interaction of this wavelength with the Fe‐S proteins and Cu‐centers of respiratory complexes and with the water molecules could be supposed.   相似文献   
116.
Insect DNA barcoding is a species identification technique used in biodiversity assessment and ecological studies. However, DNA extraction can result in the loss of up to 70% of DNA. Recent research has reported that direct PCR can overcome this issue. However, the success rates could still be improved, and tissues used for direct PCR could not be reused for further genetic studies. Here, we developed a direct PCR workflow that incorporates a 2‐min sample preparation in PBS‐buffer step for fast and effective universal insect species identification. The developed protocol achieved 100% success rates for amplification in six orders: Mantodea, Phasmatodea, Neuroptera, Odonata, Blattodea and Orthoptera. High and moderate success rates were obtained for five other species: Lepidoptera (97.3%), Coleoptera (93.8%), Diptera (90.5%), Hemiptera (81.8%) and Hymenoptera (75.0%). High‐quality sequencing data were also obtained from these amplifiable products, allowing confidence in species identification. The method was sensitive down to 1/4th of a 1‐mm fragment of leg or body and its success rates with oven‐dried, ethanol‐preserved, food, bat guano and museum specimens were 100%, 98.6%, 90.0%, 84.0% and 30.0%, respectively. In addition, the pre‐PCR solution (PBS with insect tissues) could be used for further DNA extraction if needed. The workflow will be beneficial in the fields of insect taxonomy and ecological studies due to its low cost, simplicity and applicability to highly degraded specimens.  相似文献   
117.
Hepatocyte growth factor (HGF) activation of the MET receptor tyrosine kinase influences multiple neurodevelopmental processes. Evidence from human imaging and mouse models shows that, in the forebrain, disruptions in MET signaling alter circuit formation and function. One likely means of modulation is by controlling neuron maturation. Here, we examined the signaling mechanisms through which MET exerts developmental effects in the neocortex. In situ hybridization revealed that hgf is located near MET‐expressing neurons, including deep neocortical layers and periventricular zones. Western blot analyses of neocortical crude membranes demonstrated that HGF‐induced MET autophosphorylation peaks during synaptogenesis, with a striking reduction in activation between P14 and P17 just before pruning. In vitro analysis of postnatal neocortical neurons assessed the roles of intracellular signaling following MET activation. There is rapid, HGF‐induced phosphorylation of MET, ERK1/2, and Akt that is accompanied by two major morphological changes: increases in total dendritic growth and synapse density. Selective inhibition of each signaling pathway altered only one of the two distinct events. MAPK/ERK pathway inhibition significantly reduced the HGF‐induced increase in dendritic length, but had no effect on synapse density. In contrast, inhibition of the PI3K/Akt pathway reduced HGF‐induced increases in synapse density, with no effect on dendritic length. The data reveal a key role for MET activation during the period of neocortical neuron growth and synaptogenesis, with distinct biological outcomes mediated via discrete MET‐linked intracellular signaling pathways in the same neurons. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1160–1181, 2016  相似文献   
118.
The plant secondary metabolite and common food additive dihydrocoumarin (DHC) is an inhibitor of the Sirtuin family of NAD+-dependent deacetylases. Sirtuins are key regulators of epigenetic processes that maintain silent chromatin in yeast and have been linked to gene expression, metabolism, apoptosis, tumorogenesis and age-related processes in multiple organisms, including humans. Here we report that exposure to the polyphenol DHC led to defects in several Sirtuin-regulated processes in budding yeast including the establishment and maintenance of Sir2p-dependent silencing by causing disassembly of silent chromatin, Hst1p-dependent repression of meiotic-specific genes during the mitotic cell cycle. As both transient and prolonged exposure to environmental and dietary factors have the potential to lead to heritable alterations in epigenetic states and to modulate additional Sirtuin-dependent phenotypes, we examined the bioavailability and digestive stability of DHC using an in vivo rat model and in vitro digestive simulator. Our analyses revealed that DHC was unstable during digestion and could be converted to melilotic acid (MA), which also caused epigenetic defects, albeit less efficiently. Upon ingestion, DHC was observed primarily in intestinal tissues, but did not accumulate over time and was readily cleared from the animals. MA displayed a wider tissue distribution and, in contrast to DHC, was also detected in the blood plasma, interstitial fluid, and urine, implying that the conversion of DHC to the less bioactive compound, MA, occurred efficiently in vivo.  相似文献   
119.
Inflammation is a known mechanism that facilitates HIV acquisition and the spread of infection. In this study, we evaluated whether curcumin, a potent and safe anti-inflammatory compound, could be used to abrogate inflammatory processes that facilitate HIV-1 acquisition in the female genital tract (FGT) and contribute to HIV amplification. Primary, human genital epithelial cells (GECs) were pretreated with curcumin and exposed to HIV-1 or HIV glycoprotein 120 (gp120), both of which have been shown to disrupt epithelial tight junction proteins, including ZO-1 and occludin. Pre-treatment with curcumin prevented disruption of the mucosal barrier by maintaining ZO-1 and occludin expression and maintained trans-epithelial electric resistance across the genital epithelium. Curcumin pre-treatment also abrogated the gp120-mediated upregulation of the proinflammatory cytokines tumor necrosis factor-α and interleukin (IL)-6, which mediate barrier disruption, as well as the chemokines IL-8, RANTES and interferon gamma-induced protein-10 (IP-10), which are capable of recruiting HIV target cells to the FGT. GECs treated with curcumin and exposed to the sexually transmitted co-infecting microbes HSV-1, HSV-2 and Neisseria gonorrhoeae were unable to elicit innate inflammatory responses that indirectly induced activation of the HIV promoter and curcumin blocked Toll-like receptor (TLR)-mediated induction of HIV replication in chronically infected T-cells. Finally, curcumin treatment resulted in significantly decreased HIV-1 and HSV-2 replication in chronically infected T-cells and primary GECs, respectively. All together, our results suggest that the use of anti-inflammatory compounds such as curcumin may offer a viable alternative for the prevention and/or control of HIV replication in the FGT.  相似文献   
120.
The specification of the five individual hormone-secreting cell types in the anterior pituitary requires a series of sequential cell fate decisions. We have immortalized cells at several stages along this pathway of pituitary differentiation. Here, we present analysis of differences in gene expression between an anterior pituitary precursor cell line, alphaT1-1, and an immature gonadotrope cell line, alphaT3-1, identified by using cDNA subtraction. Messenger RNA expression of members of the insulin-like growth factor signaling system, IGF-II and IGFBP-5, was found in the alphaT1-1 precursor cell line, but not in the more differentiated cell line, alphaT3-1. This inferred stage specificity was confirmed in the mouse embryo by using in situ hybridization on embryonic days e10.5 through e18.5. Expression of IGF-II and IGFBP-5 mRNAs was both temporally and spatially regulated during pituitary development. IGF-II was highly expressed in the epithelium surrounding Rathke's pouch at e10.5, while IGFBP-5 expression was restricted to the adjacent oral epithelium. At e11.5 (represented by alphaT1-1), IGF-II was expressed throughout the pouch, but was coexpressed with IGFBP-5 and alpha-subunit in the ventral portion of the pouch epithelium. On e12.5, the two mRNAs were expressed in opposing dorsoventral (IGF-II) and ventrodorsal (IGFBP-5) patterns, with IGF-II excluded from the rostral, alpha-subunit-expressing region. A decrease of both mRNAs was observed at e14.5 (equivalent to alphaT3-1), with IGF-II levels low and IGFBP-5 concentrated in the anterior pituitary rostral tip. These findings suggest that the timing of IGF-II expression and regulation of its accessibility by IGFBP-5 may play a role in anterior pituitary differentiation, survival, and/or proliferation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号