首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8592篇
  免费   790篇
  2023年   79篇
  2022年   158篇
  2021年   324篇
  2020年   190篇
  2019年   237篇
  2018年   277篇
  2017年   236篇
  2016年   371篇
  2015年   574篇
  2014年   554篇
  2013年   671篇
  2012年   783篇
  2011年   733篇
  2010年   473篇
  2009年   361篇
  2008年   505篇
  2007年   441篇
  2006年   394篇
  2005年   338篇
  2004年   315篇
  2003年   281篇
  2002年   247篇
  2001年   48篇
  2000年   33篇
  1999年   52篇
  1998年   63篇
  1997年   39篇
  1996年   34篇
  1995年   32篇
  1994年   30篇
  1993年   29篇
  1992年   16篇
  1991年   26篇
  1990年   27篇
  1989年   22篇
  1988年   18篇
  1987年   21篇
  1986年   23篇
  1985年   21篇
  1984年   30篇
  1983年   25篇
  1982年   28篇
  1981年   21篇
  1980年   14篇
  1979年   19篇
  1978年   14篇
  1977年   12篇
  1976年   14篇
  1975年   10篇
  1972年   10篇
排序方式: 共有9382条查询结果,搜索用时 31 毫秒
941.
Idiopathic pulmonary fibrosis (IPF) is difficult to diagnose because of numerous interstitial lung diseases with similar symptoms. As serum DNA has proven useful for early lung cancer detection, we aimed to define the relevance of this marker in discriminating IPF from other fibrotic and nonfibrotic/nonmalignant lung diseases. DNA was quantified in 191 subjects: 64 healthy individuals, 58 patients with IPF, 17 patients with nonspecific pulmonary fibrosis (13 idiopathic nonspecific interstitial pneumonia, 4 chronic hypersensitivity pneumonitis), and 52 patients with other diffuse/nonmalignant lung diseases. The median value of free DNA in IPF patients was 61.1 ng/mL (range 7.1-405), which was significantly higher than that of healthy donors (median 6.8, range 2.2-184) (p<0.001) and that of patients with other diffuse/nonmalignant lung diseases (median 28.0, range 4.2-281) (p=0.004). The area under the ROC curve was 0.926 (95% CI 0.879-0.973) when IPF patients were compared with healthy donors, and 0.702 (95% CI 0.609-0.796) when a comparison was made with non-IPF pulmonary diseases. In conclusion, we observed significantly higher levels of free circulating DNA in patients with IPF than in those with other fibrotic or diffuse/nonmalignant lung diseases.  相似文献   
942.
Utilizing the Citrobacter rodentium-induced transmissible murine colonic hyperplasia (TMCH) model, we measured hyperplasia and NF-κB activation during progression (days 6 and 12 post-infection) and regression (days 20–34 post-infection) phases of TMCH. NF-κB activity increased at progression in conjunction with bacterial attachment and translocation to the colonic crypts and decreased 40% by day 20. NF-κB activity at days 27 and 34, however, remained 2–3-fold higher than uninfected control. Expression of the downstream target gene CXCL-1/KC in the crypts correlated with NF-κB activation kinetics. Phosphorylation of cellular IκBα kinase (IKK)α/β (Ser176/180) was elevated during progression and regression of TMCH. Phosphorylation (Ser32/36) and degradation of IκBα, however, contributed to NF-κB activation only from days 6 to 20 but not at later time points. Phosphorylation of MEK1/2 (Ser217/221), ERK1/2 (Thr202/Tyr204), and p38 (Thr180/Tyr182) paralleled IKKα/β kinetics at days 6 and 12 without declining with regressing hyperplasia. siRNAs to MEK, ERK, and p38 significantly blocked NF-κB activity in vitro, whereas MEK1/2-inhibitor (PD98059) also blocked increases in MEK1/2, ERK1/2, and IKKα/β thereby inhibiting NF-κB activity in vivo. Cellular and nuclear levels of Ser536-phosphorylated (p65536) and Lys310-acetylated p65 subunit accompanied functional NF-κB activation during TMCH. RSK-1 phosphorylation at Thr359/Ser363 in cellular/nuclear extracts and co-immunoprecipitation with cellular p65-NF-κB overlapped with p65536 kinetics. Dietary pectin (6%) blocked NF-κB activity by blocking increases in p65 abundance and nuclear translocation thereby down-regulating CXCL-1/KC expression in the crypts. Thus, NF-κB activation persisted despite the lack of bacterial attachment to colonic mucosa beyond peak hyperplasia. The MEK/ERK/p38 pathway therefore seems to modulate sustained activation of NF-κB in colonic crypts in response to C. rodentium infection.  相似文献   
943.
Achieving successful vascularization remains one of the main problems in bone tissue engineering. After scaffold implantation, the growth of capillaries into the porous construct may be too slow to provide adequate nutrients to the cells in the scaffold interior and this inhibits tissue formation in the scaffold core. Often, prior to implantation, a controlled cell culture environment is used to stimulate cell proliferation and, once in place, the mechanical environment acting on the tissue construct is determined by the loading conditions at the implantation site. To what extent do cell seeding conditions and the construct loading environment have an effect on scaffold vascularization and tissue growth? In this study, a mechano-biological model for tissue differentiation and blood vessel growth was used to determine the influence of cell seeding on vascular network development and tissue growth inside a regular-structured bone scaffold under different loading conditions. It is predicted that increasing the number of cells seeded homogeneously reduces the rate of vascularization and the maximum penetration of the vascular network, which in turn reduces bone tissue formation. The seeding of cells in the periphery of the scaffold was predicted to be beneficial for vascularization and therefore for bone growth; however, tissue formation occurred more slowly during the first weeks after implantation compared to homogeneous seeding. Low levels of mechanical loading stimulated bone formation while high levels of loading inhibited bone formation and capillary growth. This study demonstrates the feasibility of computational design approaches for bone tissue engineering.  相似文献   
944.
945.
946.
Quiescent satellite cells sit on the surface of the muscle fibres under the basal lamina and are activated by a variety of stimuli to disengage, divide and differentiate into myoblasts that can regenerate or repair muscle fibres. Satellite cells adopt their parent's fibre type and must have some means of communication with the parent fibre. The mechanisms behind this communication are not known. We show here that satellite cells form dynamic connections with muscle fibres and other satellite cells by F‐actin based tunnelling nanotubes (TNTs). Our results show that TNTs readily develop between satellite cells and muscle fibres. Once developed, TNTs permit transport of intracellular material, and even cellular organelles such as mitochondria between the muscle fibre and satellite cells. The onset of satellite cell differentiation markers Pax‐7 and MyoD expression was slower in satellite cells cultured in the absence than in the presence of muscle cells. Furthermore physical contact between myofibre and satellite cell progeny is required to maintain subtype identity. Our data establish that TNTs constitute an integral part of myogenic cell communication and that physical cellular interaction control myogenic cell fate determination. J. Cell. Physiol. 223: 376–383, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
947.
Extracellular and intracellular mediators of inflammation, such as tumor necrosis factor alpha (TNFα) and NF‐kappaB (NF‐κB), play major roles in breast cancer pathogenesis, progression and relapse. SLUG, a mediator of the epithelial–mesenchymal transition process, is over‐expressed in CD44+/CD24? tumor initiating breast cancer cells and in basal‐like carcinoma, a subtype of aggressive breast cancer endowed with a stem cell‐like gene expression profile. Cancer stem cells also over‐express members of the pro‐inflammatory NF‐κB network, but their functional relationship with SLUG expression in breast cancer cells remains unclear. Here, we show that TNFα treatment of human breast cancer cells up‐regulates SLUG with a dependency on canonical NF‐κB/HIF1α signaling, which is strongly enhanced by p53 inactivation. Moreover, SLUG up‐regulation engenders breast cancer cells with stem cell‐like properties including enhanced expression of CD44 and Jagged‐1 in conjunction with estrogen receptor alpha down‐regulation, growth as mammospheres, and extracellular matrix invasiveness. Our results reveal a molecular mechanism whereby TNFα, a major pro‐inflammatory cytokine, imparts breast cancer cells with stem cell‐like features, which are connected to increased tumor aggressiveness. J. Cell. Physiol. 225: 682–691, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
948.
ORAI1 is the pore-forming subunit of the Ca(2+) release-activated Ca(2+) (CRAC) channel, which is responsible for store-operated Ca(2+) entry in lymphocytes. A role for ORAI1 in T cell function in vivo has been inferred from in vitro studies of T cells from human immunodeficient patients with mutations in ORAI1 and Orai1(-/-) mice, but a detailed analysis of T cell-mediated immune responses in vivo in mice lacking functional ORAI1 has been missing. We therefore generated Orai1 knock-in mice (Orai1(KI/KI)) expressing a nonfunctional ORAI1-R93W protein. Homozygosity for the equivalent ORAI1-R91W mutation abolishes CRAC channel function in human T cells resulting in severe immunodeficiency. Homozygous Orai1(KI/KI) mice die neonatally, but Orai1(KI/KI) fetal liver chimeric mice are viable and show normal lymphocyte development. T and B cells from Orai1(KI/KI) mice display severely impaired store-operated Ca(2+) entry and CRAC channel function resulting in a strongly reduced expression of several key cytokines including IL-2, IL-4, IL-17, IFN-γ, and TNF-α in CD4(+) and CD8(+) T cells. Cell-mediated immune responses in vivo that depend on Th1, Th2, and Th17 cell function were severely attenuated in ORAI1-deficient mice. Orai1(KI/KI) mice lacked detectable contact hypersensitivity responses and tolerated skin allografts significantly longer than wild-type mice. In addition, T cells from Orai1(KI/KI) mice failed to induce colitis in an adoptive transfer model of inflammatory bowel disease. These findings reaffirm the critical role of ORAI1 for T cell function and provide important insights into the in vivo functions of CRAC channels for T cell-mediated immunity.  相似文献   
949.
Lymphocyte arrest and spreading on ICAM-1-expressing APCs require activation of lymphocyte LFA-1 by TCR signals, but the conformational switches of this integrin during these critical processes are still elusive. Using Ab probes that distinguish between different LFA-1 conformations, we found that, unlike strong chemokine signals, potent TCR stimuli were insufficient to trigger LFA-1 extension or headpiece opening in primary human lymphocytes. Nevertheless, LFA-1 in these TCR-stimulated T cells became highly adhesive to both anchored and mobile surface-bound ICAM-1, although it failed to bind soluble ICAM-1 with measurable affinity. Rapid rearrangement of LFA-1 by immobilized ICAM-1 switched the integrin to an open headpiece conformation within numerous scattered submicron focal dots that did not readily collapse into a peripheral LFA-1 ring. Headpiece-activated LFA-1 microclusters were enriched with talin but were devoid of TCR and CD45. Notably, LFA-1 activation by TCR signals as well as subsequent T cell spreading on ICAM-1 took place independently of cytosolic Ca(2+). In contrast to LFA-1-activating chemokine signals, TCR activation of LFA-1 readily took place in the absence of external shear forces. LFA-1 activation by TCR signals also did not require internal myosin II forces but depended on intact actin cytoskeleton. Our results suggest that potent TCR signals fail to trigger LFA-1 headpiece activation unless the integrin first gets stabilized by surface-bound ICAM-1 within evenly scattered actin-dependent LFA-1 focal dots, the quantal units of TCR-stimulated T cell arrest and spreading on ICAM-1.  相似文献   
950.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号