首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8264篇
  免费   729篇
  2023年   79篇
  2022年   157篇
  2021年   323篇
  2020年   190篇
  2019年   238篇
  2018年   272篇
  2017年   232篇
  2016年   367篇
  2015年   567篇
  2014年   547篇
  2013年   666篇
  2012年   779篇
  2011年   722篇
  2010年   459篇
  2009年   355篇
  2008年   489篇
  2007年   427篇
  2006年   380篇
  2005年   334篇
  2004年   309篇
  2003年   268篇
  2002年   234篇
  2001年   38篇
  2000年   26篇
  1999年   40篇
  1998年   59篇
  1997年   33篇
  1996年   31篇
  1995年   25篇
  1994年   23篇
  1993年   26篇
  1992年   11篇
  1991年   21篇
  1990年   12篇
  1989年   11篇
  1988年   13篇
  1987年   18篇
  1986年   13篇
  1985年   19篇
  1984年   19篇
  1983年   20篇
  1982年   19篇
  1981年   10篇
  1980年   10篇
  1979年   14篇
  1978年   8篇
  1977年   7篇
  1976年   7篇
  1974年   6篇
  1972年   8篇
排序方式: 共有8993条查询结果,搜索用时 15 毫秒
971.
To determine the influence of asymptomatic genital viral infections on the cellular components of semen and blood, we evaluated the associations between the numbers and activation statuses of CD4+ and CD8+ T lymphocytes in both compartments and the seminal levels of cytomegalovirus (CMV), herpes simplex virus (HSV), and human immunodeficiency virus 1 (HIV). Paired blood and semen samples were collected from 36 HIV-infected antiretroviral-naïve individuals and from 40 HIV-uninfected participants. We performed multiparameter flow cytometry analysis (CD45, CD45RA, CD3, CD4, CD8, and CD38) of seminal and blood cellular components and measured HIV RNA and CMV and HSV DNA levels in seminal and blood plasma by real-time PCR. Compared to HIV-uninfected participants, in the seminal compartment HIV-infected participants had higher levels of CMV (P < 0.05), higher numbers of total CD3+ (P < 0.01) and CD8+ subset (P < 0.01) T lymphocytes, and higher CD4+ and CD8+ T lymphocyte activation (RA-CD38+) (P < 0.01). Seminal CMV levels positively correlated with absolute numbers of CD4+ and CD8+ T cells in semen (P < 0.05) and with the activation status of CD4+ T cells in semen and in blood (P < 0.01). HIV levels in semen (P < 0.05) and blood (P < 0.01) were positively associated with T-cell activation in blood. Activation of CD8+ T cells in blood remained an independent predictor of HIV levels in semen in multivariate analysis. The virologic milieu in the male genital tract strongly influences the recruitment and activation of immune cells in semen and may also modulate T-cell immune activation in blood. These factors likely influence replication dynamics, sexual transmission risk, and disease outcomes for all three viruses.  相似文献   
972.
973.
974.
We describe the rational design of a new efficient biocatalyst and the development of a sustainable green process for the synthesis of cephalosporins bearing a NH? group on the acyl side chain. The new biocatalyst was developed starting from the WT penicillin acylase (PA) from Escherichia coli by combining enzyme mutagenesis, in position α146 and β24 (βF24A/αF146Y), and immobilization on an appropriate modified industrial support, glyoxyl Eupergit C250L. The obtained derivative was used in the kinetically controlled synthesis of cephalexin, cefprozil and cefaclor and compared to the WT-PA and an already described mutant, PA-βF24A, with improved properties. The new biocatalyst posses a very high ratio between the rates of the synthesis and two undesired hydrolyses (acylating ester and the amidic product). In particular, a very low amidase activity was observed with PA-βF24A/αF146Y and, consequently, the hydrolysis of the produced antibiotic was avoided during the process. Taking advantage of this property, higher conversions in the synthesis of cephalexin (99% versus 76%), cefaclor (99% versus 65%) and cefprozil (99% versus 60%) were obtained compared to the WT enzyme. Furthermore, the new mutant also show a higher synthetic activity compared to PA-βF24A immobilized on the same support, allowing the maximum yields to be achieved in very short reaction times. The production of cephalexin with the immobilized βF24A/αF146Y acylase has been developed on a pre-industrial scale (30 l). After 20 cycles, the average yield was 93%. The biocatalyst showed good stability properties and no significant decrease in performance.  相似文献   
975.
American beech (Fagus grandifolia) is an abundant, underutilized tree in certain areas of North America, and methods to increase its market value are of considerable interest. This research utilized pigment-producing fungi to induce color in American beech to potentially establish its use as a decorative wood. Wood samples were inoculated with Trametes versicolor, Xylaria polymorpha, Inonotus hispidus, and Arthrographis cuboidea to induce fungal pigmentation. Black pigmentation (T. versicolor, X. polymorpha, I. hispidus) was sporadic, occurred primarily on the surfaces of the heartwood, but not internally. Pink pigmentation (A. cuboidea) occurred throughout all of the tested beech samples, but was difficult to see in the heartwood due to the darker color of the wood. To increase the visibility of the pink stain, beech blocks were pretreated with T. versicolor for 4 weeks before being inoculated with A. cuboidea. This method significantly increased the saturation of the pink stain on both beech heartwood and sapwood, creating coloration similar to that found on sugar maple. This value-adding process should be particularly effective for small-scale wood pigmentation, and should help establish a market for this currently underutilized wood species.  相似文献   
976.
Soil flooding has been widely reported to affect large areas of the world. In this work, we investigated the effect of waterlogging on citrus carbon and nitrogen pools and partitioning. Influence on their uptake and translocation was also studied through 1?N and 13C labeling to provide insight into the physiological mechanisms underlying the responses. The data indicated that flooding severely reduced photosynthetic activity and affected growth and biomass partitioning. Total nitrogen content and concentration in the plant also progressively decreased throughout the course of the experiment. After 36 days of treatment, nitrogen content of flooded plants had decreased more than 2.3-fold compared to control seedlings, and reductions in nitrogen concentration ranged from 21 to 55% (in roots and leaves, respectively). Specific absorption rate and transport were also affected, leading to important changes in the distribution of this element inside the plant. Additionally, experiments involving labeled nitrogen revealed that 1?N uptake rate and accumulation were drastically decreased at the end of the experiment (93% and 54%, respectively). 13CO? assimilation into the plant was strongly reduced by flooding, with δ13C reductions ranging from 22 to 37% in leaves and roots, respectively. After 36 days, the relative distribution of absorbed 13C was also altered. Thus, 13C recovery in flooded leaves increased compared to controls, whereas roots exhibited the opposite pattern. Interestingly, when carbohydrate partitioning was examined, the data revealed that sucrose concentration was augmented significantly in roots (37-56%), whereas starch was reduced. In leaves, a marked increase in sucrose was detected from the first sampling onwards (36-66%), and the same patter was observed for starch. Taken together, these results indicate that flooding altered carbon and nitrogen pools and partitioning in citrus. On one hand, reduced nitrogen concentration appears to be a consequence of impaired uptake and transport. On the other hand, the observed changes in carbohydrate distribution suggest that translocation from leaves to roots was reduced, leading to significant starch accumulation in leaves and further decreases in roots.  相似文献   
977.
978.
979.
980.
Heavy metals (HMs) are environmental pollutants of great concern to humans because of their high potential toxicity. Lead is a HM that is present in the soil in very small amounts, but anthropogenic activities have increased its content in some locations, which can make these areas unproductive or inappropriate for crop production. However, there are some plants that can grow in contaminated soils and, thus, can be useful for the removal or stabilisation of such contaminants. In addition, plants that are not able to tolerate high concentrations of HMs in the soil can become tolerant or increase their performance when associated with arbuscular mycorrhizal (AM) fungi. Accordingly, this study was carried out to verify whether the inoculation of Glomus etunicatum, an AM fungus species, in Calopogonium mucunoides would influence plant tolerance to increasing concentrations of Pb in the soil. The experimental design was completely randomised, in a 2 × 4 factorial design, and the treatments consisted of inoculation (or not) with the AM fungus, G. etunicatum, and the addition of four Pb concentrations (0, 250, 500 or 1,000 mg kg−1) to the soil. The results showed that the association of C. mucunoides with G. etunicatum promoted biomass production, and nutrient uptake (P, S and Fe) was also positively influenced by mycorrhization. The malondialdehyde content was higher in non-mycorrhizal leaves, suggesting a reduction in the damage to membranes by lipid peroxidation in plants associated with mycorrhizae. However, the Pb concentration in the shoots did not differ between the mycorrhizal and non-mycorrhizal plants. The results of our study suggest that the AM symbiosis can be considered very effective in contributing to the tolerance of C. mucunoides to Pb.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号