全文获取类型
收费全文 | 8210篇 |
免费 | 721篇 |
国内免费 | 1篇 |
专业分类
8932篇 |
出版年
2024年 | 9篇 |
2023年 | 89篇 |
2022年 | 179篇 |
2021年 | 323篇 |
2020年 | 187篇 |
2019年 | 237篇 |
2018年 | 272篇 |
2017年 | 230篇 |
2016年 | 366篇 |
2015年 | 562篇 |
2014年 | 544篇 |
2013年 | 660篇 |
2012年 | 776篇 |
2011年 | 716篇 |
2010年 | 457篇 |
2009年 | 348篇 |
2008年 | 486篇 |
2007年 | 424篇 |
2006年 | 374篇 |
2005年 | 329篇 |
2004年 | 306篇 |
2003年 | 264篇 |
2002年 | 232篇 |
2001年 | 36篇 |
2000年 | 23篇 |
1999年 | 37篇 |
1998年 | 59篇 |
1997年 | 33篇 |
1996年 | 29篇 |
1995年 | 25篇 |
1994年 | 23篇 |
1993年 | 25篇 |
1992年 | 9篇 |
1991年 | 18篇 |
1990年 | 12篇 |
1989年 | 10篇 |
1988年 | 11篇 |
1987年 | 17篇 |
1986年 | 11篇 |
1985年 | 18篇 |
1984年 | 19篇 |
1983年 | 17篇 |
1982年 | 17篇 |
1981年 | 9篇 |
1980年 | 10篇 |
1979年 | 13篇 |
1978年 | 8篇 |
1977年 | 7篇 |
1976年 | 7篇 |
1972年 | 8篇 |
排序方式: 共有8932条查询结果,搜索用时 15 毫秒
61.
Pedro M. F. Sousa Marco A. M. Videira Thomas Vorburger Sara T. N. Silva James W. Moir Julia Steuber Ana M. P. Melo 《Archives of microbiology》2013,195(3):211-217
Neisseria meningitidis is a pathogenic bacterium responsible for meningitis. The mechanisms underlying the control of Na+ transmembrane movement, presumably important to pathogenicity, have been barely addressed. To elucidate the function of the components of the Na+ transport system in N. meningitidis, an open reading frame from the genome of this bacterium displaying similarity with the NhaE type of Na+/H+ antiporters was expressed in Escherichia coli and characterized for sodium transport ability. The N. meningitidis antiporter (NmNhaE) was able to complement an E. coli strain devoid of Na+/H+ antiporters (KNabc) respecting the ability to grow in the presence of NaCl and LiCl. Ion transport assays in everted vesicles prepared from KNabc expressing NmNhaE from a plasmid confirmed its ability to translocate Na+ and Li+. Here is presented the characterization of the first NhaE from a pathogen, an important contribution to the comprehension of sodium ion metabolism in this kind of microorganisms. 相似文献
62.
Changiz Geula Sara R. Dunlop Ivan Ayala Allegra S. Kawles Margaret E. Flanagan Tamar Gefen Marek-Marsel Mesulam 《Journal of neurochemistry》2021,158(6):1394-1411
63.
Deborah F. Tate Leslie Lytle Kristen Polzien Molly Diamond Kelsey R. Leonard John M. Jakicic Karen C. Johnson Christine M. Olson Kevin Patrick Laura P. Svetkey Rena R. Wing Pao‐Hwa Lin Mathilda Coday Melissa N. Laska Gina Merchant Sara J. Czaja Richard Schulz Steven H. Belle 《Obesity (Silver Spring, Md.)》2019,27(7):1085-1098
64.
Ettamimi Sara Carlier Jorge D. Cox Cymon J. Elamine Youssef Hammani Khalil Ghazal Hassan Costa Maria C. 《Extremophiles : life under extreme conditions》2019,23(6):821-834
Extremophiles - The prokaryotic communities of water bodies contaminated by acid mine drainage from the São Domingos mining area in southern Portugal were analyzed using a meta-taxonomics... 相似文献
65.
Laura S. Weyrich Olivier Y. Rolin Sarah J. Muse Jihye Park Nicholas Spidale Mary J. Kennett Sara E. Hester Chun Chen Edward G. Dudley Eric T. Harvill 《PloS one》2012,7(10)
Type VI Secretion Systems (T6SSs) have been identified in numerous Gram-negative pathogens, but the lack of a natural host infection model has limited analysis of T6SS contributions to infection and pathogenesis. Here, we describe disruption of a gene within locus encoding a putative T6SS in Bordetella bronchiseptica strain RB50, a respiratory pathogen that circulates in a broad range of mammals, including humans, domestic animals, and mice. The 26 gene locus encoding the B. bronchiseptica T6SS contains apparent orthologs to all known core genes and possesses thirteen novel genes. By generating an in frame deletion of clpV, which encodes a putative ATPase required for some T6SS-dependent protein secretion, we observe that ClpV contributes to in vitro macrophage cytotoxicity while inducing several eukaryotic proteins associated with apoptosis. Additionally, ClpV is required for induction of IL-1β, IL-6, IL-17, and IL-10 production in J774 macrophages infected with RB50. During infections in wild type mice, we determined that ClpV contributes to altered cytokine production, increased pathology, delayed lower respiratory tract clearance, and long term nasal cavity persistence. Together, these results reveal a natural host infection system in which to interrogate T6SS contributions to immunomodulation and pathogenesis. 相似文献
66.
Johanna C. Karst V. Yvette Ntsogo Enguéné Sara E. Cannella Orso Subrini Audrey Hessel Sylvain Debard Daniel Ladant Alexandre Chenal 《The Journal of biological chemistry》2014,289(44):30702-30716
The adenylate cyclase (CyaA) toxin, a multidomain protein of 1706 amino acids, is one of the major virulence factors produced by Bordetella pertussis, the causative agent of whooping cough. CyaA is able to invade eukaryotic target cells in which it produces high levels of cAMP, thus altering the cellular physiology. Although CyaA has been extensively studied by various cellular and molecular approaches, the structural and functional states of the toxin remain poorly characterized. Indeed, CyaA is a large protein and exhibits a pronounced hydrophobic character, making it prone to aggregation into multimeric forms. As a result, CyaA has usually been extracted and stored in denaturing conditions. Here, we define the experimental conditions allowing CyaA folding into a monomeric and functional species. We found that CyaA forms mainly multimers when refolded by dialysis, dilution, or buffer exchange. However, a significant fraction of monomeric, folded protein could be obtained by exploiting molecular confinement on size exclusion chromatography. Folding of CyaA into a monomeric form was found to be critically dependent upon the presence of calcium and post-translational acylation of the protein. We further show that the monomeric preparation displayed hemolytic and cytotoxic activities suggesting that the monomer is the genuine, physiologically active form of the toxin. We hypothesize that the structural role of the post-translational acylation in CyaA folding may apply to other RTX toxins. 相似文献
67.
Stephan Wagner Smrutisanjita Behera Sara De Bortoli David C. Logan Philippe Fuchs Luca Carraretto Enrico Teardo Laura Cendron Thomas Nietzel Magdalena Fü?l Fabrizio G. Doccula Lorella Navazio Mark D. Fricker Olivier Van Aken Iris Finkemeier Andreas J. Meyer Ildikò Szabò Alex Costa Markus Schwarzl?nder 《The Plant cell》2015,27(11):3190-3212
Plant organelle function must constantly adjust to environmental conditions, which requires dynamic coordination. Ca2+ signaling may play a central role in this process. Free Ca2+ dynamics are tightly regulated and differ markedly between the cytosol, plastid stroma, and mitochondrial matrix. The mechanistic basis of compartment-specific Ca2+ dynamics is poorly understood. Here, we studied the function of At-MICU, an EF-hand protein of Arabidopsis thaliana with homology to constituents of the mitochondrial Ca2+ uniporter machinery in mammals. MICU binds Ca2+ and localizes to the mitochondria in Arabidopsis. In vivo imaging of roots expressing a genetically encoded Ca2+ sensor in the mitochondrial matrix revealed that lack of MICU increased resting concentrations of free Ca2+ in the matrix. Furthermore, Ca2+ elevations triggered by auxin and extracellular ATP occurred more rapidly and reached higher maximal concentrations in the mitochondria of micu mutants, whereas cytosolic Ca2+ signatures remained unchanged. These findings support the idea that a conserved uniporter system, with composition and regulation distinct from the mammalian machinery, mediates mitochondrial Ca2+ uptake in plants under in vivo conditions. They further suggest that MICU acts as a throttle that controls Ca2+ uptake by moderating influx, thereby shaping Ca2+ signatures in the matrix and preserving mitochondrial homeostasis. Our results open the door to genetic dissection of mitochondrial Ca2+ signaling in plants. 相似文献
68.
Linking larval nutrition to adult reproductive traits in the European corn borer Ostrinia nubilalis 下载免费PDF全文
Throughout an organism's lifetime, resources are strategically allocated to many different functions, including reproduction. Reproduction can be costly for both sexes; females produce nutrient‐rich eggs, whereas males of many species produce large and complex ejaculates. In capital breeding insects, nutrients are mainly acquired during the larval period, yet allocation decisions impact the reproductive fitness of adults. The present study examines the effect of larval dietary nitrogen on both male and female reproductive traits in the European corn borer moth Ostrinia nubilalis Hübner, whose adults do not feed and whose males transfer a large, nitrogen‐rich spermatophore. One day post‐eclosion, O. nubilalis adults reared on one of three different diets (3.0%, 1.6%, or 1.1% nitrogen) are mated and two experiments are undertaken: one to measure nitrogen and carbon content of male ejaculates, and the other to determine female fecundity and fertility. Although male larval diet does not alter the percentage nitrogen content of adult somatic tissue, males reared on the higher nitrogen diet (3.0%) produce spermatophores with increased nitrogen relative to somatic nitrogen. Furthermore, females raised on the 3.0% nitrogen diet receive spermatophores with lower carbon : nitrogen ratios and thus more nitrogen. Overall, females lay more eggs as their larval dietary nitrogen increases, although they lay fewer eggs when their mates are raised on the higher (3.0%) nitrogen diet. This suggests that O. nubilalis females may use male‐derived nitrogen not to supplement egg production, but rather for somatic maintenance. Overall, the present study furthers our understanding of how larval diet can affect adult fitness in Lepidoptera. 相似文献
69.
Daniel Schnorr Aline C. Muniz Sara Passos Luiz H. Guimaraes Ednaldo L. Lago Olívia Bacellar Marshall J. Glesby Edgar M. Carvalho 《PLoS neglected tropical diseases》2012,6(12)
Background
Cutaneous leishmaniasis due to L. braziliensis (CL) is characterized by a positive delayed type hypersensitivity test (DTH) leishmania skin test (LST) and high IFN-γ production to soluble leishmania antigen (SLA). The LST is used for diagnosis of CL and for identification of individuals exposed to leishmania infection but without disease. The main aim of the present study was to identify markers of exposure to L. braziliensis infection.Methodolgy/Principal Findings
This cohort study enrolled 308 household contacts (HC) of 76 CL index cases. HC had no active or past history of leishmaniasis. For the present cross-sectional study cytokines and chemokines were determined in supernatants of whole blood culture stimulated with SLA. Of the 308 HC, 36 (11.7%) had a positive LST but in these IFN-γ was only detected in 22 (61.1%). Moreover of the 40 HC with evidence of IFN-γ production only 22 (55%) had a positive LST. A total of 54 (17.5%) of 308 HC had specific immune response to SLA. Only a moderate agreement (Kappa = 0.52; 95% CI: 0.36–0.66) was found between LST and IFN-γ production. Moreover while enhancement of CXCL10 in cultures stimulated with SLA was observed in HC with DTH+ and IFN-γ+ and in patients with IFN-γ+ and DTH−, no enhancement of this chemokine was observed in supernatants of cells of HC with DTH+ and IFN-γ−.Conclusions/Significance
This study shows that in addition of LST, the evaluation of antigen specific IFN-γ production should be performed to determine evidence of exposure to leishmania infection. Moreover it suggests that in some HC production of IFN-γ and CXCL10 are performed by cells not involved with DTH reaction. 相似文献70.
Genetics of host–parasite interactions: towards a comprehensive dissection of Drosophila resistance to viral infection 下载免费PDF全文
One of the major challenges in evolutionary biology is to unravel the genetic basis of adaptation. This issue has been gaining momentum in recent years with the accelerated development of novel genetic and genomic techniques and resources. In this issue of Molecular Ecology, Cogni et al. (2016) address the genetic basis of resistance to two viruses in Drosophila melanogaster using a panel of recombinant inbred lines with unprecedented resolution allowing detection of rare alleles and/or alleles of small effect. The study confirms the role of previously identified genes of major effect and adds novel regions with minor effect to the genetic basis of Drosophila resistance to the Drosophila C virus or the sigma virus. Additional analyses reveal the absence of cross‐resistance and of epistasis between the various genomic regions. This detailed information on the genetic architecture of host resistance constitutes an important step towards the understanding of both the physiology of antiviral immunity and the evolution of host–parasite interactions. 相似文献