首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9992篇
  免费   875篇
  2023年   103篇
  2022年   186篇
  2021年   339篇
  2020年   204篇
  2019年   245篇
  2018年   324篇
  2017年   271篇
  2016年   437篇
  2015年   661篇
  2014年   667篇
  2013年   828篇
  2012年   920篇
  2011年   845篇
  2010年   533篇
  2009年   403篇
  2008年   580篇
  2007年   493篇
  2006年   444篇
  2005年   401篇
  2004年   370篇
  2003年   318篇
  2002年   286篇
  2001年   73篇
  2000年   80篇
  1999年   62篇
  1998年   69篇
  1997年   45篇
  1996年   45篇
  1995年   39篇
  1994年   34篇
  1993年   33篇
  1992年   22篇
  1991年   26篇
  1990年   16篇
  1989年   20篇
  1988年   23篇
  1987年   22篇
  1986年   17篇
  1985年   29篇
  1984年   32篇
  1983年   20篇
  1982年   29篇
  1981年   15篇
  1980年   14篇
  1979年   19篇
  1975年   12篇
  1974年   13篇
  1973年   15篇
  1972年   13篇
  1958年   13篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
Conformationally constraining selectable peptides onto a suitable scaffold that enables their conformation to be predicted or readily determined by experimental techniques would considerably boost drug discovery process by reducing the gap between the discovery of a peptide lead and the design of a peptidomimetic with a more desirable pharmacological profile. With this in mind, we designed the minibody, a 61-residue β-protein aimed at retaining some desirable features of immunogloblin variable domains, such as tolerance to sequence variability in selected regions of the protein and predictability of main chain conformation of the same regions, based on the ‘canonical structures’ model. To test the ability of the minibody scaffold to support functional sites we also designed a metal binding version of the protein by suitably choosing the sequences of its loops. The minibody was produced both by chemical syntyhesis and expression in E. coli and charactgerized by size exclusion chromatography, UV CD (circular dichroism) spectroscopy and metal binding activity. All our data supported the model, but a more detailed structural characterization of the molecule was impaired by its low soubility. We were able to overcome this problem both by further; mutagenesis of the framework and by addition of a solublizing motif. The minibody is being used to select constrained human IL-6 peptidic ligands from a library displayed on the surface of the f1 bacteriophage.  相似文献   
52.
Deletion of a region of the promiscuous plasmid pLS1 encompassing the initiation signals for the synthesis of the plasmid lagging strand led to plasmid instability in Streptococcus pneumoniae and Bacillus subtilis. This defect could not be alleviated by increasing the number of copies (measured as double-stranded plasmid DNA) to levels similar to those of the wild-type plasmid pLS1. Our results indicate that in the vicinity of, or associated with the single-stranded origin region of pLS1 there is a plasmid component involved in its stable inheritance. Homology was found between the DNA gyrase binding site within the par region of plasmid pSC101 and the pLS1 specific recombination site RSR.  相似文献   
53.
Radial tree growth is sensitive to environmental conditions, making observed growth increments an important indicator of climate change effects on forest growth. However, unprecedented climate variability could lead to non-stationarity, that is, a decoupling of tree growth responses from climate over time, potentially inducing biases in climate reconstructions and forest growth projections. Little is known about whether and to what extent environmental conditions, species, and model type and resolution affect the occurrence and magnitude of non-stationarity. To systematically assess potential drivers of non-stationarity, we compiled tree-ring width chronologies of two conifer species, Picea abies and Pinus sylvestris, distributed across cold, dry, and mixed climates. We analyzed 147 sites across the Europe including the distribution margins of these species as well as moderate sites. We calibrated four numerical models (linear vs. non-linear, daily vs. monthly resolution) to simulate growth chronologies based on temperature and soil moisture data. Climate–growth models were tested in independent verification periods to quantify their non-stationarity, which was assessed based on bootstrapped transfer function stability tests. The degree of non-stationarity varied between species, site climatic conditions, and models. Chronologies of P. sylvestris showed stronger non-stationarity compared with Picea abies stands with a high degree of stationarity. Sites with mixed climatic signals were most affected by non-stationarity compared with sites sampled at cold and dry species distribution margins. Moreover, linear models with daily resolution exhibited greater non-stationarity compared with monthly-resolved non-linear models. We conclude that non-stationarity in climate–growth responses is a multifactorial phenomenon driven by the interaction of site climatic conditions, tree species, and methodological features of the modeling approach. Given the existence of multiple drivers and the frequent occurrence of non-stationarity, we recommend that temporal non-stationarity rather than stationarity should be considered as the baseline model of climate–growth response for temperate forests.  相似文献   
54.

Aim

Climate change is affecting the distribution of species and subsequent biotic interactions, including hybridization potential. The imperiled Golden-winged Warbler (GWWA) competes and hybridizes with the Blue-winged Warbler (BWWA), which may threaten the persistence of GWWA due to introgression. We examined how climate change is likely to alter the breeding distributions and potential for hybridization between GWWA and BWWA.

Location

North America.

Methods

We used GWWA and BWWA occurrence data to model climatically suitable conditions under historical and future climate scenarios. Models were parameterized with 13 bioclimatic variables and 3 topographic variables. Using ensemble modeling, we estimated historical and modern distributions, as well as a projected distribution under six future climate scenarios. We quantified breeding distribution area, the position of and amount of overlap between GWWA and BWWA distributions under each climate scenario. We summarized the top explanatory variables in our model to predict environmental parameters of the distributions under future climate scenarios relative to historical climate.

Results

GWWA and BWWA distributions are projected to substantially change under future climate scenarios. GWWA are projected to undergo the greatest change; the area of climatically suitable breeding season conditions is expected to shift north to northwest; and range contraction is predicted in five out of six future climate scenarios. Climatically suitable conditions for BWWA decreased in four of the six future climate scenarios, while the distribution is projected to shift east. A reduction in overlapping distributions for GWWA and BWWA is projected under all six future climate scenarios.

Main Conclusions

Climate change is expected to substantially alter the area of climatically suitable conditions for GWWA and BWWA, with the southern portion of the current breeding ranges likely to become climatically unsuitable. However, interactions between BWWA and GWWA are expected to decline with the decrease in overlapping habitat, which may reduce the risk of genetic introgression.  相似文献   
55.

Aim

Despite the complexity of population dynamics, most studies concerning current changes in bird populations reduce the trajectory of population change to a linear trend. This may hide more complex patterns reflecting responses of bird populations to changing anthropogenic pressures. Here, we address this complexity by means of multivariate analysis and attribute different components of bird population dynamics to different potential drivers.

Location

Czech Republic.

Methods

We used data on population trajectories (1982–2019) of 111 common breeding bird species, decomposed them into independent components by means of the principal component analysis (PCA), and related these components to multiple potential drivers comprising climate, land use change and species' life histories.

Results

The first two ordination axes explained substantial proportion of variability of population dynamics (42.0 and 12.5% of variation in PC1 and PC2 respectively). The first axis captured linear population trend. Species with increasing populations were characterized mostly by long lifespan and warmer climatic niches. The effect of habitat was less pronounced but still significant, with negative trends being typical for farmland birds, while positive trends characterized birds of deciduous forests. The second axis captured the contrast between hump-shaped and U-shaped population trajectories and was even more strongly associated with species traits. Species migrating longer distances and species with narrower temperature niches revealed hump-shaped population trends, so that their populations mostly increased before 2000 and then declined. These patterns are supported by the trends of total abundances of respective ecological groups.

Main Conclusion

Although habitat transformation apparently drives population trajectories in some species groups, climate change and associated species traits represent crucial drivers of complex population dynamics of central European birds. Decomposing population dynamics into separate components brings unique insights into non-trivial patterns of population change and their drivers, and may potentially indicate changes in the regime of anthropogenic effects on biodiversity.  相似文献   
56.

Aim

Desert springs or oases are the only permanent mesic environments in highly water-limited arid regions. Oases have immense cultural, evolutionary and ecological importance for people and a high number of endemic and relic species. Nevertheless, they are also highly vulnerable ecosystems, with invasive species, overexploitation and climate change being the primary threats. We used the arthropod communities' spatiotemporal diversity and distribution patterns as a proxy to understand biodiversity dynamics in two geographically close but ecologically contrasting and highly threatened ecosystems: deserts and oases.

Location

Baja California Peninsula, Mexico.

Methods

Arthropod communities at five oases and surrounding desert scrub areas were sampled in two seasons. Using DNA metabarcoding and traditional taxonomic surveys, we tried to identify what biotic and abiotic characteristics of the habitat are important drivers of arthropod diversity and how these characteristics can change across spatial and temporal scales.

Results

Over 6200 individuals representing 23 orders were collected. In oasis samples, the community composition fluctuated more in space (i.e. among sites) than in time (i.e. seasons). Thus, seasonal changes did not affect oasis community diversity and composition, but the dissimilarity among sites increased with geographic distance. Moreover, anthropic activities negatively correlated with arthropod diversity in oases. On the other hand, the season, geography (e.g. latitude) and biotic characteristics of the habitat (e.g. sampled scrub species) significantly affected the diversity and composition of the desert arthropod communities.

Main Conclusions

Neutral dynamics (e.g. historical climatic events, dispersal limitation and spatial component) and human impact significantly influenced the biodiversity patterns of each oasis. In contrast, the habitat's seasonal variation and biotic characteristics were the most important variables influencing the diversity of the desert communities. Baja California oases harbour distinct invertebrate communities; therefore, each oasis should be conserved individually to preserve these unique assemblages.  相似文献   
57.
Eco-evolutionary dynamics, or eco-evolution for short, are often thought to involve rapid demography (ecology) and equally rapid heritable phenotypic changes (evolution) leading to novel, emergent system behaviours. We argue that this focus on contemporary dynamics is too narrow: Eco-evolution should be extended, first, beyond pure demography to include all environmental dimensions and, second, to include slow eco-evolution which unfolds over thousands or millions of years. This extension allows us to conceptualise biological systems as occupying a two-dimensional time space along axes that capture the speed of ecology and evolution. Using Hutchinson's analogy: Time is the ‘theatre’ in which ecology and evolution are two interacting ‘players’. Eco-evolutionary systems are therefore dynamic: We identify modulators of ecological and evolutionary rates, like temperature or sensitivity to mutation, which can change the speed of ecology and evolution, and hence impact eco-evolution. Environmental change may synchronise the speed of ecology and evolution via these rate modulators, increasing the occurrence of eco-evolution and emergent system behaviours. This represents substantial challenges for prediction, especially in the context of global change. Our perspective attempts to integrate ecology and evolution across disciplines, from gene-regulatory networks to geomorphology and across timescales, from today to deep time.  相似文献   
58.
Chromosome numbers are reported for 19 collections representing 16 AsiaticPotentilla taxa. The first chromosome records are reported forP. desertorum Bunge var.arnavatensis Wolf (2n=28),P. festiva Soják (2n=28),P. griffithii Hook f. subsp.beauvaisii (Cardot) Soják (2n=42),P. micropetala D. Don subsp.byssitecta (Soják) Měsí?ek etSoják (2n=14),P. mollissima Lehm. (2n=28),P. moorcroftii Wall. exLehm. (2n=42),P. multicaulis Bunge (2n=14),P. [x]omissa Soják (2n=35, 56, 70) andP. stanjukoviczii Ovcz. exKoczk. (2n=14). Counts differing from those previously recorded are given forP. algida Soják (2n=56) andP. flagellaris Willd. exSchlecht. (2n=42). Chromosome numbers of the following species were confirmed:P. [x]agrimonioides Bieb. (2n=42),P. chinensis Ser. in DC. (2n=14),P. fragarioides L. (2n=14),P. lineata Trev. (2n=14) andP. sericea L. (2n=28). Taxonomy is briefly discussed. A new combinationP. micropetala D. Don subsp.byssitecta (Soják) Měsí?ek etSoják stat. nov. is proposed.  相似文献   
59.
Cardiomyopathy is a progressive disease of the myocardium leading to impaired contractility. Genotoxic cancer therapies are known to be potent drivers of cardiomyopathy, whereas causes of spontaneous disease remain unclear. To test the hypothesis that endogenous genotoxic stress contributes to cardiomyopathy, we deleted the DNA repair gene Ercc1 specifically in striated muscle using a floxed allele of Ercc1 and mice expressing Cre under control of the muscle-specific creatinine kinase (Ckmm) promoter or depleted systemically (Ercc1−/D mice). Ckmm-Cre+/−;Ercc1−/fl mice expired suddenly of heart disease by 7 months of age. As young adults, the hearts of Ckmm-Cre+/−;Ercc1−/fl mice were structurally and functionally normal, but by 6-months-of-age, there was significant ventricular dilation, wall thinning, interstitial fibrosis, and systolic dysfunction indicative of dilated cardiomyopathy. Cardiac tissue from the tissue-specific or systemic model showed increased apoptosis and cardiac myocytes from Ckmm-Cre+/-;Ercc1−/fl mice were hypersensitive to genotoxins, resulting in apoptosis. p53 levels and target gene expression, including several antioxidants, were increased in cardiac tissue from Ckmm-Cre+/−;Ercc1−/fl and Ercc1−/D mice. Despite this, cardiac tissue from older mutant mice showed evidence of increased oxidative stress. Genetic or pharmacologic inhibition of p53 attenuated apoptosis and improved disease markers. Similarly, overexpression of mitochondrial-targeted catalase improved disease markers. Together, these data support the conclusion that DNA damage produced endogenously can drive cardiac disease and does so mechanistically via chronic activation of p53 and increased oxidative stress, driving cardiac myocyte apoptosis, dilated cardiomyopathy, and sudden death.  相似文献   
60.
Developing organisms are often exposed to fluctuating environments that destabilize tissue-scale processes and induce abnormal phenotypes. This might be common in species that lay eggs in the external environment and with little parental care, such as many reptiles. In turtles, morphological development has provided striking examples of abnormal phenotypic patterns, though the influence of the environment remains unclear. To this end, we compared fluctuating asymmetry, as a proxy for developmental instability, in turtle hatchlings incubated in controlled laboratory and unstable natural conditions. Wild and laboratory hatchlings featured similar proportions of supernumerary scales (scutes) on the dorsal shell (carapace). Such abnormal scutes likely elevated shape asymmetry, which was highest in natural nests. Moreover, we tested the hypothesis that hot and dry environments cause abnormal scute formation by subjecting eggs to a range of hydric and thermal laboratory incubation regimes. Shape asymmetry was similar in hatchlings incubated at five constant temperatures (26–30°C). A hot (30°C) and severely Dry substrate yielded smaller hatchlings but scutes were not overtly affected. Our study suggests that changing nest environments contribute to fluctuating asymmetry in egg-laying reptiles, while clarifying the conditions at which turtle shell development remains buffered from the external environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号