首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   395篇
  免费   24篇
  2023年   5篇
  2022年   11篇
  2021年   11篇
  2020年   13篇
  2019年   5篇
  2018年   12篇
  2017年   10篇
  2016年   21篇
  2015年   19篇
  2014年   25篇
  2013年   26篇
  2012年   26篇
  2011年   31篇
  2010年   25篇
  2009年   10篇
  2008年   15篇
  2007年   18篇
  2006年   22篇
  2005年   19篇
  2004年   18篇
  2003年   7篇
  2002年   15篇
  2001年   5篇
  2000年   5篇
  1999年   2篇
  1996年   3篇
  1995年   1篇
  1994年   3篇
  1992年   2篇
  1990年   2篇
  1989年   3篇
  1987年   1篇
  1986年   2篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1973年   3篇
  1972年   2篇
  1971年   3篇
  1970年   1篇
  1968年   1篇
  1964年   3篇
  1963年   1篇
排序方式: 共有419条查询结果,搜索用时 31 毫秒
61.
The interior of the eukaryotic cell is a highly compartmentalized space containing both membrane-bound organelles and the recently identified nonmembranous ribonucleoprotein (RNP) granules. This study examines in Saccharomyces cerevisiae the assembly of one conserved type of the latter compartment, known as the stress granule. Stress granules form in response to particular environmental cues and have been linked to a variety of human diseases, including amyotrophic lateral sclerosis. To further our understanding of these structures, a candidate genetic screen was employed to identify regulators of stress granule assembly in quiescent cells. These studies identified a ubiquitin-specific protease, Ubp3, as having an essential role in the assembly of these RNP granules. This function was not shared by other members of the Ubp protease family and required Ubp3 catalytic activity as well as its interaction with the cofactor Bre5. Interestingly, the loss of stress granules was correlated with a decrease in the long-term survival of stationary-phase cells. This phenotype is similar to that observed in mutants defective for the formation of a related RNP complex, the Processing body. Altogether, these observations raise the interesting possibility of a general role for these types of cytoplasmic RNP granules in the survival of G0-like resting cells.  相似文献   
62.
63.

Objectives

An extracellular protease inhibitor (BTPI-301) of trypsin was purified and characterized from an isolate of Pseudomonas mendocina.

Results

BTPI-301was purified to homogeneity by (NH4)2SO4, precipitation, DEAE Sepharose and CNBr-activated Sepharose chromatography. Homogeneity was proved by native PAGE and SDS-PAGE. The intact molecular mass was 11567 Da by MALDI-TOF analysis. BTPI-301was a competitive inhibitor with a Ki of 3.5 × 10?10 M. It was stable and active at pH 4–12 and also at 4–90 °C for 1 h. Peptide mass fingerprinting by MALDI revealed that the BTPI-301 is a new inhibitor not reported so far with protease inhibitory activity. The pI of the inhibitor was 3.8. The stoichiometry of trypsin-BTPI-301 interaction is 1:1. The inhibitor was specific towards trypsin.

Conclusion

A pH tolerant and thermostable protease inhibitor BTPI-301 active against trypsin was purified and characterized from P. mendocina that could be developed and used as biopreservative as well as biocontrol agent.
  相似文献   
64.
In immunogold double-labeling of pea leaf thin sections with antibodies raised against ferredoxin-NADP reductase (EC 1.18.1.2, FNR) and antibodies directed against the A or B subunits of the NADP-linked glyceraldehyde-3-P dehydrogenase (GAPD) (EC 1.2.1.13), many small and large gold particles were found together over the chloroplasts. Nearest neighbor analysis of the distribution of the gold particles indicates that FNR and the NADP-linked GAPD are co-localized, in situ. This suggests that FNR might carry FADH2 or NADPH from the thylakoid membrane to GAPD, or that ferredoxin might carry electrons to FNR co-localized with GAPD in the stroma. Crystal structures of the spinach enzymes are available. When they are docked computationally, the proteins appear, as modeled, to be able to form at least two different complexes. One involves a single GAPD monomer and an FNR monomer (or dimer). The amino acid residues located at the putative interface are highly conserved on the chloroplastic forms of both enzymes. The other potential complex involves the GAPD A2B2 tetramer and an FNR monomer (or dimer). The interface residues are conserved in this model as well. Ferredoxin is able to interact with FNR in either complex.  相似文献   
65.
Sponges invariably filter a large volume of seawater and potentially accumulate heavy metals and other contaminants from the environment. Sponges, being sessile marine invertebrates and modular in body organization, can live many years in the same location and therefore have the capability to accumulate anthropogenic pollutants such as metals over a long period. Almost all marine sponges harbor large number of microorganisms within their tissues where they reside in the extra- and intra-cellular spaces. Bacteria in seawater have already been established as biological indicators of contamination. The present study was intended to find out the heavy metal resistance pattern of sponge-associated bacteria so as to develop suitable biological indicators. The bacteria associated with a marine sponge Fasciospongia cavernosa were evaluated as potential indicator organisms. The associated bacteria including Streptomyces sp. (MSI01), Salinobacter sp. (MSI06), Roseobacter sp. (MSI09), Pseudomonas sp. (MSI016), Vibrio sp. (MSI23), Micromonospora sp. (MSI28), Saccharomonospora sp. (MSI36) and Alteromonas sp. (MSI42) showed resistance against tested heavy metals. Based on the present findings, Cd and Hg emerged as the highly resistant heavy metal pollutants in the Gulf of Mannar biosphere reserve. Plasmids in varied numbers and molecular weights were found in all the isolates. Particularly the isolates MSI01 and MSI36 harbored as many as three plasmids each. The results envisaged that the plasmids might have carried the resistance factor. No correlation was observed in number of plasmids and level of resistance. The literature evidenced that the sponge-associated bacteria were seldom exploited for pollution monitoring though they have been extensively used for bioprospecting. In this background, the present findings come up with a new insight into the development of indicator models.  相似文献   
66.
A total of six bacterial isolates were developed into two consortia and tested for utilization of epoxy silicone blends (ESBs; % w/w: 3.0) and epoxy as the sole carbon source. In-vitro biodegradation studies in minimal broth revealed that higher biomass and more sustained growth of consortia were obtained in the presence of epoxy and/or ESBs when these were incubated under aerobic conditions for 15 days. Treated samples were analyzed by Fourier transform infrared spectroscopy (FTIR) and simultaneous thermogravimetric–differential thermogravimetry–differential thermal analysis (TG–DTG–DTA), which indicated the breakage and formation of bonds in the polymer backbone. Moreover, a weight loss of 34.17 and 36.9% was found in epoxy and ESBs, respectively after 15 days of treatment with consortium-1. Further, in-vitro growth statistics study revealed more CFU count at mid-logarithmic phase in the presence of epoxy/ESBs unlikely to the absence of the polymers. However, the generation time was not affected. In the present study, consortium-1, comprising of Microbacterium sp., Pseudomonas putida and Bacterium Te 68R showed better biodegradation in comparison to consortium-2, wherein, P. putida and Pseudomonas aeruginosa were present. Overall, these results suggest that epoxy/ESBs polymers could be degraded by a biologically mediated process if a suitable consortium is used.  相似文献   
67.
Various parameters such as solvent selection, concentration, soaking time, and temperature were tested in a single bioreactor in order to determine optimum extraction conditions of glucoamylase, when produced simultaneously with protease by Aspergillus awamari nakazawa MTCC 6652. Optimum conditions were achieved in a 10% glycerol solution soaked for 2 h at 40°C, followed by concentration of extracted glucoamylase (9,157 U/gds) by acetone precipitation (1:2, v/v), which yielded 51.9% recovery. Ion exchange chromatography and gel filtration showed specific activities of 270.5 and 337.5 U/mg, respectively, while SDS-PAGE and zymogram analysis of glucoamylase indicated the presence of three starch-hydrolyzing isoforms with molecular weights of approximately 109.6, 87.1, and 59.4 kDa, respectively  相似文献   
68.

Background

Despite great advances in genomic technology observed in several crop species, the availability of molecular tools such as microsatellite markers has been limited in tea (Camellia sinensis L.). The development of microsatellite markers will have a major impact on genetic analysis, gene mapping and marker assisted breeding. Unigene derived microsatellite (UGMS) markers identified from publicly available sequence database have the advantage of assaying variation in the expressed component of the genome with unique identity and position. Therefore, they can serve as efficient and cost effective alternative markers in such species.

Results

Considering the multiple advantages of UGMS markers, 1,223 unigenes were predicted from 2,181 expressed sequence tags (ESTs) of tea (Camellia sinensis L.). A total of 109 (8.9%) unigenes containing 120 SSRs were identified. SSR abundance was one in every 3.55 kb of EST sequences. The microsatellites mainly comprised of di (50.8%), tri (30.8%), tetra (6.6%), penta (7.5%) and few hexa (4.1%) nucleotide repeats. Among the dinucleotide repeats, (GA)n.(TC)n were most abundant (83.6%). Ninety six primer pairs could be designed form 83.5% of SSR containing unigenes. Of these, 61 (63.5%) primer pairs were experimentally validated and used to investigate the genetic diversity among the 34 accessions of different Camellia spp. Fifty one primer pairs (83.6%) were successfully cross transferred to the related species at various levels. Functional annotation of the unigenes containing SSRs was done through gene ontology (GO) characterization. Thirty six (60%) of them revealed significant sequence similarity with the known/putative proteins of Arabidopsis thaliana. Polymorphism information content (PIC) ranged from 0.018 to 0.972 with a mean value of 0.497. The average heterozygosity expected (H E ) and observed (H o ) obtained was 0.654 and 0.413 respectively, thereby suggesting highly heterogeneous nature of tea. Further, test for IAM and SMM models for the UGMS loci showed excess heterozygosity and did not show any bottleneck operating in the tea population.

Conclusion

UGMS markers identified and characterized in this study provided insight about the abundance and distribution of SSR in the expressed genome of C. sinensis. The identification and validation of 61 new UGMS markers will not only help in intra and inter specific genetic diversity assessment but also be enriching limited microsatellite markers resource in tea. Further, the use of these markers would reduce the cost and facilitate the gene mapping and marker-aided selection in tea. Since, 36 of these UGMS markers correspond to the Arabidopsis protein sequence data with known functions will offer the opportunity to investigate the consequences of SSR polymorphism on gene functions.  相似文献   
69.
Gallic acid, one of the most abundant plant phenolic acids, has been modified to cathepsin D protease inhibitors. The strategy of modification was proposed basing on some previously reported structure and activity relationship (SAR) studies. The synthesized naphthophenone fatty acid amide derivatives have been evaluated for in vitro cathepsin D inhibition activity. Two of them have shown significant inhibition activity with IC(50) values of 0.06 and 0.14 microM, respectively, as compared against pepstatin (0.0023 microM), the most potent inhibitor known so far. The study revealed that such attempts on gallic acid based pharmacophores might result in potent inhibitors of cathepsin D.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号