首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   2篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2017年   3篇
  2016年   6篇
  2015年   2篇
  2014年   2篇
  2013年   6篇
  2012年   4篇
  2011年   3篇
  2010年   3篇
  2009年   3篇
  2008年   2篇
  2007年   6篇
  2006年   3篇
  2005年   6篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   3篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1991年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1984年   1篇
  1981年   1篇
  1966年   1篇
  1964年   4篇
排序方式: 共有85条查询结果,搜索用时 15 毫秒
81.
In this work is presented the first attempt to develop an innovative ultrastable protein-based biosensor for blood glucose detections. The gene of a putative thermostable sugar-binding protein has been cloned and expressed in E. coli. The recombinant protein has been purified to homogeneity by thermoprecipitation and affinity chromatography steps. The recombinant protein is a monomer with an apparent molecular weight of 55,000 as judged by gel filtration and sodium dodecyl sulfate polyacrylamide gel eletrophoresis. Circular dichroism experiments showed that the protein possesses a secondary structure content rich in alpha-helices and beta-structures and that the protein is highly stable as investigated in the range of temperature between 20 and 95 degrees C. Fluorescence spectroscopy experiments demonstrated that the recombinant protein binds glucose with a dissociation constant of about 10 mM, a concentration of sugar very close to the concentration of glucose present in the human blood. A docking simulation on the modeled structure of the protein confirms its ability to bind glucose and proposes possible modifications to improve the affinity for glucose and/or its detection. The obtained results suggest the use of the protein as a probe for a stable glucose biosensor.  相似文献   
82.
Cancer is the leading cause of morbidity and mortality worldwide. Some studies have shown that high heat kills cancer cells. Irisin is a protein involved in heat production by converting white into brown adipose tissue, but there is no information about how its expression changes in cancerous tissues. We used irisin antibody immunohistochemistry to investigate changes in irisin expression in gastrointestinal cancers compared to normal tissues. Irisin was found in human brain neuroglial cells, esophageal epithelial cells, esophageal epidermoid carcinoma, esophageal adenocarcinoma and neuroendocrine esophageal carcinoma, gastric glands, gastric adenosquamous carcinoma, gastric neuroendocrine carcinoma, gastric signet ring cell carcinoma, neutrophils in vascular tissues, intestinal glands of colon, colon adenocarcinoma, mucinous colon adenocarcinoma, hepatocytes, hepatocellular carcinoma, islets of Langerhans, exocrine pancreas, acinar cells and interlobular and interlobular ducts of normal pancreas, pancreatic ductal adenocarcinoma, and intra- and interlobular ducts of cancerous pancreatic tissue. Histoscores (area × intensity) indicated that irisin was increased significantly in gastrointestinal cancer tissues, except liver cancers. Our findings suggest that the relation of irisin to cancer warrants further investigation.  相似文献   
83.

Background  

The complexity of mitochondrial complex I (CI; NADH:ubiquinone oxidoreductase) has increased considerably relative to the homologous complex in bacteria. Comparative analyses of CI composition in animals, fungi and land plants/green algae suggest that novel components of mitochondrial CI include a set of 18 proteins common to all eukaryotes and a variable number of lineage-specific subunits. In plants and green algae, several purportedly plant-specific proteins homologous to γ-type carbonic anhydrases (γCA) have been identified as components of CI. However, relatively little is known about CI composition in the unicellular protists, the characterizations of which are essential to our understanding of CI evolution.  相似文献   
84.
85.
Targeting regulatory RNA regions to interfere with the biosynthesis of a protein is an intriguing alternative to targeting a protein itself. Regulatory regions are often unique in sequence and/or structure and, thus, ideally suited for specific recognition with a low risk of undesired side effects. Targeting regulatory RNA elements, however, is complicated by their complex three-dimensional structure, which poses kinetic and thermodynamic constraints to the recognition by a complementary oligonucleotide. Oligonucleotide mimics, which shift the thermodynamic equilibrium towards complex formation and yield stable complexes with a target RNA, can overcome this problem. Peptide nucleic acids (PNA) represent such a promising class of molecules. PNA are very stable, non-ionic compounds and they are not sensitive to enzymatic degradation. Yet, PNA form specific base pairs with a target sequence. We have designed, synthesised and characterised PNA able to enter infected cells and to bind specifically to a control region of the genomic RNA of coxsackievirus B3 (CVB3), which is an important human pathogen. The results obtained by studying the interaction of such PNA with their RNA target, the entrance into the cell and the viral inhibition are herein presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号