首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   3篇
  国内免费   1篇
  124篇
  2022年   4篇
  2021年   3篇
  2020年   1篇
  2019年   6篇
  2018年   4篇
  2017年   3篇
  2016年   3篇
  2015年   6篇
  2014年   6篇
  2013年   10篇
  2012年   12篇
  2011年   12篇
  2010年   4篇
  2009年   4篇
  2008年   6篇
  2007年   2篇
  2006年   4篇
  2005年   6篇
  2004年   5篇
  2003年   5篇
  2002年   2篇
  2000年   1篇
  1991年   1篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1984年   3篇
  1983年   1篇
  1974年   1篇
  1967年   1篇
  1961年   1篇
排序方式: 共有124条查询结果,搜索用时 15 毫秒
21.
In recent years, progress in cancer treatment has greatly increased the chances of recovery. Yet, treatment may have irreversible effects on patients’ fertility. In order to protect future fertility, preservation of ovarian tissue may be offered today even to very young girls, involving a surgical procedure that may be performed by minimally invasive laparoscopy, under general anesthesia. However, in the tragic event of a girl’s death, questions may arise regarding the possible use of the preserved ovarian tissue by her parents. Should posthumous reproductive use of ovarian tissue without the girl’s prior consent (due to her young age) be considered a violation of her rights? On the other hand, can it be argued that it is in the interest of a child who died young to leave a genetic trace through posthumous reproduction, because genetic continuity is in the interest of every human being? After presenting the relevant clinical facts, we explore the ethical dimensions of this possible practice through an analysis of the interests of the deceased, her parents, and the child that may be born posthumously.  相似文献   
22.
In the climate change scenario the drought has been diagnosed as major stress affecting crop productivity. This review demonstrates some recent findings on the amelioration of drought stress. Nanoparticles, synthetic growth regulators viz. Trinexapac-ethyl, and Biochar addition helps to economize the water budget of plants, enhances the bioavailability of water and nutrients as well as overcomes drought induced osmotic and oxidative stresses. Besides ABA, SA and JA are also involved in inducing tolerance to drought stress through modulation of physiological and biochemical processes in plants. Plant growth promoting rhizobacteria (PGPR) offer new opportunities in agricultural biotechnology. These beneficial microorganisms colonize the rhizosphere/endo-rhizosphere of plants and impart drought tolerance by improving root architechture, enhancing water use efficiency, producing exopolysaccharides, phytohormones viz, ABA, SA and IAA and volatile compounds. Further PGPR also play positive role in combating osmotic and oxidative stresses induced by drought stress through enhancing the accumulation of osmolytes, antioxidants and upregulation or down regulation of stress responsive genes. In transgenic plants stress inducible genes enhanced abiotic stress tolerance by encoding key enzymes regulating biosynthesis of compatible solutes. The role of genes/cDNAs encoding proteins involved in regulating other genes/proteins, signal transduction process and strategies to improve drought stress tolerance have also been discussed.  相似文献   
23.
甘肃、新疆、内蒙苹果蠹蛾成虫消长规律   总被引:2,自引:0,他引:2  
苹果蠹蛾Cydia pomonella(L.)是我国重要的果树害虫和检疫对象。2005年至2010年,本研究在甘肃、新疆及内蒙古的不同区县选取了16个果园,使用性信息素诱捕器对其中的苹果蠹蛾成虫发生规律进行长期监测。结果表明,苹果蠹蛾在西北地区每年发生2.5个世代;在正常气候条件下,3个成虫发生高峰分别出现在5月上旬、7月中下旬和8月中下旬,但不同地区及同一地区不同果园之间存在较大差异;化学防治、迷向防治等防治措施对苹果蠹蛾成虫捕获量的影响较大,因此生活史研究为主的监测并不适合在上述果园中开展。综合上述研究结果,未对苹果蠹蛾的季节动态进行准确的预测,需要对苹果蠹蛾除成虫外的其他虫态的季节性变化进行详细研究,并建议选择3个以上的果园进行监测,综合各个果园的监测结果并得出结论。  相似文献   
24.
The worldwide decline in honeybee colonies during the past 50 years has often been linked to the spread of the parasitic mite Varroa destructor and its interaction with certain honeybee viruses. Recently in the United States, dramatic honeybee losses (colony collapse disorder) have been reported; however, there remains no clear explanation for these colony losses, with parasitic mites, viruses, bacteria, and fungal diseases all being proposed as possible candidates. Common characteristics that most failing colonies share is a lack of overt disease symptoms and the disappearance of workers from what appears to be normally functioning colonies. In this study, we used quantitative PCR to monitor the presence of three honeybee viruses, deformed wing virus (DWV), acute bee paralysis virus (ABPV), and black queen cell virus (BQCV), during a 1-year period in 15 asymptomatic, varroa mite-positive honeybee colonies in Southern England, and 3 asymptomatic colonies confirmed to be varroa mite free. All colonies with varroa mites underwent control treatments to ensure that mite populations remained low throughout the study. Despite this, multiple virus infections were detected, yet a significant correlation was observed only between DWV viral load and overwintering colony losses. The long-held view has been that DWV is relatively harmless to the overall health status of honeybee colonies unless it is in association with severe varroa mite infestations. Our findings suggest that DWV can potentially act independently of varroa mites to bring about colony losses. Therefore, DWV may be a major factor in overwintering colony losses.Deformed wing virus (DWV), acute bee paralysis virus (ABPV), and black queen cell virus (BQCV) are single-stranded positive-sense RNA viruses of the order Picornavirales and are regularly detected in honeybee populations in the United Kingdom (1). ABPV has been assigned to the family Dicistroviridae and is known to follow a classic acute-type infection strategy since relatively low loads (103 to 106 viruses per honeybee) can rapidly translate into overt symptoms of paralysis and ultimately death for the honeybee, depending on the mode of transmission (6, 33). ABPV shares >92% sequence homology with other members of the family Dicistroviridae, Kashmir bee virus and Israeli acute paralysis virus, across the eight conserved domains of the RNA-dependent RNA polymerase gene, and it has been proposed that these viruses have recently diverged and are variants of each other (7). Advances in the study of this proposed ABPV complex is revealing the significant impact these viruses may have on honeybee colonies on a global scale. For example, a recent study in the United States has observed a correlation between Israeli acute paralysis virus and colony collapse disorder (17). That said, other agents, including bacteria and microsporidia, have also been proposed as important factors in the onset of colony loss (25, 27).BQCV is similar to ABPV in that it, too, follows a typical acute infection strategy. This virus is known to infect honeybee queen cell larvae, causing the larvae to discolor and die (5). It has been shown to be associated with the microsporidian Nosema apis (4) although whether N. apis has a direct role in the transmission of this virus still needs to be determined. Both ABPV and BQCV have been detected in worker honeybees and pupae (38), and the viruses are transmitted orally, via food and feeding activities (14). BQCV has also been detected in queen honeybees (13), suggesting that vertical transmission is also important for this virus. Both BQCV (12) and ABPV (38) have been detected within the varroa mite; however, only ABPV (9) has been shown to be vectored by varroa mites and has been found associated with dead colonies infested with varroa mites in Germany, Russia, and the United States (1). Later modeling work (33) indicated that very large (10,000+) mite populations are required to kill a colony since it is difficult for ABPV to become established among the bee population due to its high virulence.DWV is currently designated as a member of the unassigned genus Iflavirus within the order Picornavirales. It is generally considered as less virulent than ABPV or Kashmir bee virus, but it is known to cause overt symptoms of wing deformities in developing honeybees, resulting in emerging honeybees that are unable to fly and die shortly (5). It is also speculated that a cloud of DWV sequence variants exists that have evolved from a common ancestor. This is due to the high sequence similarities DWV isolates share with Kakugo virus and Varroa destructor virus within the RNA-dependent RNA polymerase gene, yet differences in virus epidemiology and pathological effects distinguish them from each other (29). DWV has been detected in worker honeybees, pupae, larvae, drones, and queens (15, 18, 20) as well as within the varroa mite (38, 43) and more recently the mite Tropilaelaps mercedesae (21), implying a range of horizontal and vertical transmission routes. Despite their global occurrence, it is generally accepted that DWVs play a secondary role in the causes of honeybee disease compared to their parasitic and bacterial counterparts as the viruses routinely reside at low levels in colonies, with symptomatic infections being rare (5). Moreover, multiple variants with differing infection strategies can account for a lack of discernible symptoms.Whether these viruses follow a persistent, latent, inapparent, or progressive infection strategy still remains unclear. Persistent (often called chronic) infections imply that the rate of infection within a host is in balance with the reproduction rate of the infected cell type or host itself. This is achieved through a combination of changing virus replication and host immune responses. Latent infections occur when the virus lies dormant within the host (replication inactive) until activation by defined stimuli. Progressive infections are caused by viruses that enter the host cell and replicate undetected for many cellular generations over many years before manifesting overt or acute symptoms. These three infection strategies all evade the host immune system, which results in the inability of the host to fully expel the virus, and this inability is often lethal. Inapparent (often referred to as covert) infections are indicative of a highly evolved relationship between the virus and natural host. Moreover, these infections are distinct in that the natural host can eventually clear itself from this short-term infection (19). Infections of DWV are often described as inapparent (15); however, Yue et al. (44) have suggested that a distinction should be made between “true inapparent” and their newly defined “covert infection” based on the long-term nature of DWV infection in honeybee colonies and on the nature of its transmission. This conclusion is congruent with current knowledge that traditional serological screening methods for DWV have limitations in their sensitivity (20). Therefore, the presence and duration of DWV within colonies have often been underestimated using serological assays as the overt symptoms of the deformed wing phenotype (>1011 virions per honeybee) are short-lived. Advances in virus detection methodologies have enabled the development of more sensitive techniques, such as PCR, and this has demonstrated that DWV persists for longer periods within colonies (38). However, based on the current research evidence, a case could be made that DWV actually follows the classic persistent infection strategy.DWV is thought to have an intricate relationship with varroa mites such that immunosuppression of the honeybee pupae by the mites results in increased DWV amplification when the honeybees are exposed to other pathogens (42). It has additionally been shown that the number of mites parasitizing honeybee pupae is positively correlated with the probability of their developing malformed wings (10). Other findings indicate that DWV replication within the mite and subsequent transmission to developing honeybees lead to the increased likelihood of the bees'' emerging with wing deformities (24, 43). Taken together, the expectation is that DWV-associated colony collapse would typically occur in the presence of a large (>2,000) varroa mite infestation carrying high levels of DWV and with a high proportion of deformed honeybees. While the effect of varroa mite-induced DWV disease is well recognized, i.e., wing deformities coupled with downregulation of immunity-related genes and antimicrobial peptides (36, 42) and impaired learning behavior (28), the impact of non-varroa mite-vectored DWV within asymptomatic honeybees still needs to be realized. Moreover, it was recently reported that varroa mite-free bumblebees that tested positive for DWV actually showed symptoms of DWV infection (23). Even though these bumblebees were in close proximity to DWV-infected and varroa mite-infested honeybee colonies, it is evidence that the dependency of DWV on varroa mite vectoring for a symptomatic infection (manifested as classic wing deformities or other symptoms) may not be as critical as previously thought.The purpose of this study was to investigate asymptomatic viral dynamics within husbanded honeybee colonies over an annual cycle. We set out to observe the relationship, if any, between virus infections, varroa mite parasitism and vectoring, honeybee colony health, and colony longevity. For the first time, a quantitative analysis of three picorna-like honeybee viruses over the course of a year was undertaken for DWV, ABPV, and BQCV.  相似文献   
25.
Malignant pleural mesothelioma (MPM) is an aggressive disease with a poor prognosis. Studies have shown that both MET and its key downstream intracellular signaling partners, PI3K and mTOR, are overexpressed in MPM. Here we determined the combinatorial therapeutic efficacy of a new generation small molecule inhibitor of MET, ARQ 197, and dual PI3K/mTOR inhibitors NVP-BEZ235 and GDC-0980 in mesothelioma cell and mouse xenograft models. Cell viability results show that mesothelioma cell lines were sensitive to ARQ 197, NVP-BEZ235 and GDC-0980 inhibitors. The combined use of ARQ 197 with either NVP-BEZ235 or GDC-0980, was synergistic (CI<1). Significant delay in wound healing was observed with ARQ 197 (p<0.001) with no added advantage of combining it with either NVP-BEZ235 or GDC-0980. ARQ 197 alone mainly induced apoptosis (20±2.36%) that was preceded by suppression of MAPK activity, while all the three suppressed cell cycle progression. Both GDC-0980 and NVP-BEZ235 strongly inhibited activities of PI3K and mTOR as evidenced from the phosphorylation status of AKT and S6 kinase. The above observation was further substantiated by the finding that a majority of the MPM archival samples tested revealed highly active AKT. While the single use of ARQ 197 and GDC-0980 inhibited significantly the growth of MPM xenografts (p<0.05, p<0.001 respectively) in mice, the combination of the above two drugs was highly synergistic (p<0.001). Our results suggest that the combined use of ARQ 197/NVP-BEZ235 and ARQ 197/GDC-0980 is far more effective than the use of the drugs singly in suppressing MPM tumor growth and motility and therefore merit further translational studies.  相似文献   
26.
27.
28.
Sukinda is one of the most polluted regions of the globe due to chromium pollution. The study sheds light into the heavy metal pollution around the mining area and its effect on the health of the resident populace. The Cr(VI) was in the range of 0.027–2.48 mg/L in surface water and BDL–1.35 mg/L in the groundwater. Multivariate analysis revealed that mining activity was the main source of TCr, Cr(VI), and Zn in the surface water that warrants attention. Heavy metal evaluation index showed high levels of Fe, Mn, and Cr in groundwater that can pose serious threat to the exposed population. Cancer and non-cancer risk of Cr(VI) was higher than other metals in groundwater. The results revealed that the total cancer risk was 1.21E-03 and 1.05E-03 in adults and children, respectively, which exceeded the USEPA acceptable cancer health risk. High health risk was observed through oral intake of water, while both cancer and non-cancer risks were negligible through dermal contact. This study strongly advocates proper periodic assessment of drinking as well as surface water in the area and regulation to restrict the use of contaminated water for daily use.  相似文献   
29.
30.

Background

Syphilis in pregnancy imposes a significant global health and economic burden. More than half of cases result in serious adverse events, including infant mortality and infection. The annual global burden from mother-to-child transmission (MTCT) of syphilis is estimated at 3.6 million disability-adjusted life years (DALYs) and $309 million in medical costs. Syphilis screening and treatment is simple, effective, and affordable, yet, worldwide, most pregnant women do not receive these services. We assessed cost-effectiveness of scaling-up syphilis screening and treatment in existing antenatal care (ANC) programs in various programmatic, epidemiologic, and economic contexts.

Methods and Findings

We modeled the cost, health impact, and cost-effectiveness of expanded syphilis screening and treatment in ANC, compared to current services, for 1,000,000 pregnancies per year over four years. We defined eight generic country scenarios by systematically varying three factors: current maternal syphilis testing and treatment coverage, syphilis prevalence in pregnant women, and the cost of healthcare. We calculated program and net costs, DALYs averted, and net costs per DALY averted over four years in each scenario. Program costs are estimated at $4,142,287 – $8,235,796 per million pregnant women (2010 USD). Net costs, adjusted for averted medical care and current services, range from net savings of $12,261,250 to net costs of $1,736,807. The program averts an estimated 5,754 – 93,484 DALYs, yielding net savings in four scenarios, and a cost per DALY averted of $24 – $111 in the four scenarios with net costs. Results were robust in sensitivity analyses.

Conclusions

Eliminating MTCT of syphilis through expanded screening and treatment in ANC is likely to be highly cost-effective by WHO-defined thresholds in a wide range of settings. Countries with high prevalence, low current service coverage, and high healthcare cost would benefit most. Future analyses can be tailored to countries using local epidemiologic and programmatic data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号