首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   508篇
  免费   28篇
  2023年   1篇
  2022年   1篇
  2021年   7篇
  2020年   7篇
  2019年   4篇
  2018年   7篇
  2017年   17篇
  2016年   14篇
  2015年   27篇
  2014年   24篇
  2013年   36篇
  2012年   48篇
  2011年   52篇
  2010年   36篇
  2009年   21篇
  2008年   39篇
  2007年   37篇
  2006年   30篇
  2005年   24篇
  2004年   22篇
  2003年   27篇
  2002年   23篇
  2001年   5篇
  2000年   2篇
  1999年   1篇
  1998年   5篇
  1997年   4篇
  1996年   4篇
  1995年   1篇
  1994年   1篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1987年   1篇
  1977年   1篇
  1976年   2篇
排序方式: 共有536条查询结果,搜索用时 15 毫秒
71.
72.
The chemical identity and integrity of the genome is challenged by the incorporation of ribonucleoside triphosphates (rNTPs) in place of deoxyribonucleoside triphosphates (dNTPs) during replication. Misincorporation is limited by the selectivity of DNA replicases. We show that accumulation of ribonucleoside monophosphates (rNMPs) in the genome causes replication stress and has toxic consequences, particularly in the absence of RNase H1 and RNase H2, which remove rNMPs. We demonstrate that postreplication repair (PRR) pathways-MMS2-dependent template switch and Pol ζ-dependent bypass-are crucial for tolerating the presence of rNMPs in the chromosomes; indeed, we show that Pol ζ efficiently replicates over 1-4 rNMPs. Moreover, cells lacking RNase H accumulate mono- and polyubiquitylated PCNA and have a constitutively activated PRR. Our findings describe a crucial function for RNase H1, RNase H2, template switch, and translesion DNA synthesis in overcoming rNTPs misincorporated during DNA replication, and may be relevant for the pathogenesis of Aicardi-Goutières syndrome.  相似文献   
73.
74.
Pioglitazone, one of thiazolidinediones, a peroxisome proliferator-activated receptor (PPAR)-γ ligand, is known to have beneficial effects on macrovascular complications in diabetes, but the effect on diabetic neuropathy is not well addressed. We demonstrated the expression of PPAR-γ in Schwann cells and vascular walls in peripheral nerve and then evaluated the effect of pioglitazone treatment for 12 weeks (10 mg/kg/day, orally) on neuropathy in streptozotocin-diabetic rats. At end, pioglitazone treatment improved nerve conduction delay in diabetic rats without affecting the expression of PPAR-γ. Diabetic rats showed suppressed protein kinase C (PKC) activity of endoneurial membrane fraction with decreased expression of PKC-α. These alterations were normalized in the treated group. Enhanced expression of phosphorylated extracellular signal-regulated kinase detected in diabetic rats was inhibited by the treatment. Increased numbers of macrophages positive for ED-1 and 8-hydroxydeoxyguanosine-positive Schwann cells in diabetic rats were also corrected by the treatment. Pioglitazone lowered blood lipid levels of diabetic rats, but blood glucose and nerve sorbitol levels were not affected by the treatment. In conclusion, our study showed that pioglitazone was beneficial for experimental diabetic neuropathy via correction of impaired PKC pathway and proinflammatory process, independent of polyol pathway.  相似文献   
75.
Low-intensity electrical current (or mild electrical stimulation; MES) influences signal transduction and activates phosphatidylinositol-3 kinase (PI3K)/Akt pathway. Because insulin resistance is characterized by a marked reduction in insulin-stimulated PI3K-mediated activation of Akt, we asked whether MES could increase Akt phosphorylation and ameliorate insulin resistance. In addition, it was also previously reported that heat shock protein 72 (Hsp72) alleviates hyperglycemia. Thus, we applied MES in combination with heat shock (HS) to in vitro and in vivo models of insulin resistance. Here we show that 10-min treatment with MES at 5 V (0.1 ms pulse duration) together with HS at 42°C increased the phosphorylation of insulin signaling molecules such as insulin receptor substrate (IRS) and Akt in HepG2 cells maintained in high-glucose medium. MES (12 V)+mild HS treatment of high fat-fed mice also increased the phosphorylation of insulin receptor β subunit (IRβ) and Akt in mice liver. In high fat-fed mice and db/db mice, MES+HS treatment for 10 min applied twice a week for 12–15 weeks significantly decreased fasting blood glucose and insulin levels and improved insulin sensitivity. The treated mice showed significantly lower weight of visceral and subcutaneous fat, a markedly improved fatty liver and decreased size of adipocytes. Our findings indicated that the combination of MES and HS alleviated insulin resistance and improved fat metabolism in diabetes mouse models, in part, by enhancing the insulin signaling pathway.  相似文献   
76.
77.
We examined the effects of the mutual substitution of amino acid residues at positions 216 and 219 between rat CYP2D1 and CYP2D2 on their microsomal contents and enzymatic functions using a yeast cell expression system and 5-methoxy-N,N-diisopropyltryptamine (5-MeO-DIPT) as a substrate. CYP2D1 has amino acid residues, leucine and valine, at positions of 216 and 219, respectively, whereas CYP2D2 has phenylalanine and aspartic acid at the same positions. In reduced carbon monoxide-difference spectroscopic analysis, the substitution of Asp-219 of CYP2D2 by valine markedly increased a peak at 450 nm and concomitantly decreased a peak at 420 nm, while the replacement of Phe-216 of CYP2D2 with leucine gave no observable change. The double substitution of Phe-216 and Asp-219 by leucine and valine, respectively, yielded a typical CYP spectrum. The substitution of Val-219 of CYP2D1 by aspartic acid decreased the CYP content to one-half, whereas the replacement of Leu-216 with phenylalanine did not have any effect. The double substitution of Leu-216 and Val-219 of CYP2D1 by phenylalanine and aspartic acid, respectively, diminished the CYP content by 90%. CYP2D1 catalyzed both 5-MeO-DIPT N-deisopropylation and O-demethylation at relatively low levels, while CYP2D2 catalyzed 5-MeO-DIPT O-demethylation efficiently. The substitution of the amino acid at position 216 substantially increased 5-MeO-DIPT oxidation activities of the two CYP2D enzymes. The replacement of the amino acid at position 219 increased the 5-MeO-DIPT O- and N-dealkylation activities of CYP2D1, whereas it decreased the 5-MeO-DIPT O-demethylation activity of CYP2D2. These results indicate that amino acid residues at positions 216 and 219 have important roles in the enzymatic functions of rat CYP2D1 and CYP2D2.  相似文献   
78.
Escherichia coli cytosolic glycerophosphodiester phosphodiesterase, UgpQ, functions in the absence of other proteins encoded by the ugp operon and requires Mg2+, Mn2+, or Co2+, in contrast to Ca2+-dependent periplasmic glycerophosphodiester phosphodiesterase, GlpQ. UgpQ has broad substrate specificity toward various glycerophosphodiesters, producing sn-glycerol-3-phosphate and the corresponding alcohols. UgpQ accumulates under conditions of phosphate starvation, suggesting that it allows the utilization of glycerophosphodiesters as a source of phosphate. These results clarify how E. coli utilizes glycerophosphodiesters using two homologous enzymes, UgpQ and GlpQ.  相似文献   
79.
长时间盐胁迫对苋菜叶片细胞结构的影响   总被引:8,自引:0,他引:8  
生长40d的苋菜秧苗用300mmol·L-1的NaCl处理28 d后,生长受抑,叶面积变小,叶绿素含量降低;叶肉增厚、微管束变小,细胞内容物减少、叶绿体收缩、液泡扩大,细胞核染色程度变浅,形状拉长;细胞内淀粉含量增加.  相似文献   
80.
OMP85 is a highly conserved outer membrane protein in all Gram-negative bacteria. We studied an uncharacterized OMP85 homolog of Porphyromonas gingivalis, a primary periodontal pathogen forming subgingival plaque biofilms. Using an outer-loop peptide antibody specific for the OMP85 of P. gingivalis, loop-3 Ab, we found a difference in the mobility of OMP85 on SDS-PAGE gel between the P. gingivalis wild-type and the isogenic galE mutant, a deglycosylated strain, suggesting that OMP85 naturally exists in a glycosylated form. This was also supported by a shift in OMP85 PAGE mobility after chemical deglycosylation treatment. Further, loop-3 Ab cross-reacted with the galE mutant stronger than the wild-type strain; and could inhibit biofilm formation in the galE mutant more than in the wild-type strain. In conclusion, this is the first report providing the evidence of OMP85 glycosylation and the involvement of OMP85 in biofilm formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号