首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   508篇
  免费   28篇
  536篇
  2023年   1篇
  2022年   1篇
  2021年   7篇
  2020年   7篇
  2019年   4篇
  2018年   7篇
  2017年   17篇
  2016年   14篇
  2015年   27篇
  2014年   24篇
  2013年   36篇
  2012年   48篇
  2011年   52篇
  2010年   36篇
  2009年   21篇
  2008年   39篇
  2007年   37篇
  2006年   30篇
  2005年   24篇
  2004年   22篇
  2003年   27篇
  2002年   23篇
  2001年   5篇
  2000年   2篇
  1999年   1篇
  1998年   5篇
  1997年   4篇
  1996年   4篇
  1995年   1篇
  1994年   1篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1987年   1篇
  1977年   1篇
  1976年   2篇
排序方式: 共有536条查询结果,搜索用时 15 毫秒
61.
62.
Among the organic cation transporters, OCTN2 is identified as the most important carnitine transporter owing to the ability to transport carnitine. Although the OCTN2 is previously found in various tissues, there have been no reports showing the OCTN2 in the pancreas. In this study, we examined the expression and localization of OCTN2 in the mouse pancreas by the aid of an in situ hybridization technique and immunohistochemistry with anti-OCTN2 antibody. As a result, the OCTN2 expression was found in the A-cells for the first time. OCTN2 was not expressed in B-cells, notwithstanding that the metabolism of long-chain fatty acids, which are transported into the mitochondria with the help of carnitine, was expected for fatty acid-stimulated insulin secretion. Thus, this study suggests the possibility of carnitine uptake in the pancreatic A-cells through OCTN2 and implies the presence of carnitine transporter(s) other than OCTN2 in the B-cell.  相似文献   
63.
Lupeol induces the formation of dendrites in B16 2F2 melanoma cells. The remodeling of cytoskeletal components contributes to the dendricity of melanoma cells. We studied the effects of lupeol on the remodeling of cytoplasmic filaments in B16 2F2 cells. Western blotting revealed no change in the levels of actin and tubulin. Lupeol attenuated stress fiber assembly, but did not promote the remodeling of microtubular networks. We examined the activation of cofilin, an actin-depolymerizing factor, in lupeol-treated B16 2F2 cells by western blotting. The level of phospho-cofilin was found to decrease in a time-dependent manner. Inhibition of p38 MAPK by SB203580 blocked tyrosinase induction by lupeol, but did not influence the disruption of stress fiber assembly or the dephosphorylation of cofilin. Furthermore, we studied the effects of lupeol on cell migration. At 10 microM, lupeol markedly inhibited the haptotaxis of B16 2F2 cells to fibronectin. Additionally, lupeol strongly inhibited the migration of human melanoma and neuroblastoma cells, and weakly suppressed the migration of lung adenocarcinoma cells. However, lupeol did not affect the motility of other cancer cells. The results suggest that lupeol suppresses the migration of malignant melanoma cells by disassembling the actin cytoskeleton.  相似文献   
64.
We describe the clinical characterization, molecular analyses, and genetic mapping of a distinct genetic condition characterized by craniosynostosis, delayed closure of the fontanel, cranial defects, clavicular hypoplasia, anal and genitourinary malformations, and skin eruption. We have identified seven patients with this phenotype in four families from different geographic regions and ethnic backgrounds. This is an autosomal recessive condition that brings together apparently opposing pathophysiologic and developmental processes, including accelerated suture closure and delayed ossification. Selected candidate genes--including RUNX2, CBFB, MSX2, ALX4, TWIST1, and RECQL4--were screened for mutations, by direct sequencing of their coding regions, and for microdeletions, by fluorescent in situ hybridization. No mutations or microdeletions were detected in any of the genes analyzed. A genomewide screen yielded the maximum estimated LOD score of +2.38 for markers D22S283 and D22S274 on chromosome 22q12-q13. We hypothesize that the gene defect in this condition causes novel context-dependent dysregulation of multiple signaling pathways, including RUNX2, during osteoblast differentiation and craniofacial morphogenesis.  相似文献   
65.
Oxygen-evolving photosystem II (PSII) isolated from a marine centric diatom, Chaetoceros gracilis, contains a novel extrinsic protein (Psb31) in addition to four red algal type extrinsic proteins of PsbO, PsbQ′, PsbV, and PsbU. In this study, the five extrinsic proteins were purified from alkaline Tris extracts of the diatom PSII by anion and cation exchange chromatographic columns at different pH values. Reconstitution experiments in various combinations with the purified extrinsic proteins showed that PsbO, PsbQ′, and Psb31 rebound directly to PSII in the absence of other extrinsic proteins, indicating that these extrinsic proteins have their own binding sites in PSII intrinsic proteins. On the other hand, PsbV and PsbU scarcely rebound to PSII alone, and their effective bindings required the presence of all of the other extrinsic proteins. Interestingly, PSII reconstituted with Psb31 alone considerably restored the oxygen evolving activity in the absence of PsbO, indicating that Psb31 serves as a substitute in part for PsbO in supporting oxygen evolution. A significant difference found between PSIIs reconstituted with Psb31 and with PsbO is that the oxygen evolving activity of the former is scarcely stimulated by Cl and Ca2+ ions but that of the latter is largely stimulated by these ions, although rebinding of PsbV and PsbU activated oxygen evolution in the absence of Cl and Ca2+ ions in both the former and latter PSIIs. Based on these results, we proposed a model for the association of the five extrinsic proteins with intrinsic proteins in diatom PSII and compared it with those in PSIIs from the other organisms.  相似文献   
66.
67.
The 5′-untranslated leader sequence (UTLS) of the slpA gene from Lactobacillus acidophilus contributes to mRNA stabilization by producing a 5′ stem and loop structure, and a high-level expression system for the lactic acid bacteria was developed using the UTLS in this study. A plasmid, which expresses α-amylase under the control of the ldh promoter, was constructed by integrating the core promoter sequence with the UTLS. The role of the UTLS in increasing the copies of the α-amylase mRNA was proved by measuring α-amylase activity in the culture supernatant and the relative expression of α-amylase mRNA was determined by the quantitative real-time PCR analysis. Moreover, several expression systems were constructed by combining the core promoter sequence with the UTLS or with the partially deleted UTLS and the expression level was evaluated. The use of the UTLS led to the success in improving α-amylase expression in the two strains of Lactobacillus casei and Lactococcus lactis. The current study showed that the improvement in protein production using the UTLS could be applied to the expression system in the lactic acid bacteria.  相似文献   
68.
ShaA, a member of a multigene-encoded Na+/H+ antiporter in B. subtilis, is a large integral membrane protein consisting of 20 transmembrane helices (TM). Conservation of ShaA-like protein subunits in several cation-coupled enzymes, including the NuoL (ND5) subunit of the H+-translocating complex I, suggests the involvement of ShaA in cation transport. Bacillus subtilis ShaA contains six acidic residues that are conserved in ShaA homologues and are located in putative transmembrane helices. We examined the functional involvement of the six transmembrane acidic residues of ShaA by site-directed mutagenesis. Mutation in glutamate (Glu)-113 in TM-4, Glu-657 in TM-18, aspartate (Asp)-734 and Glu-747 in TM-20 abolished the antiport activity, suggesting that these residues play important roles in the ion transport of Sha. The acidic group was necessary and sufficient in Glu-657 and Asp-743, while it was not true of Glu-113 and Glu-747. Mutation in Asp-103 in TM-3, which is conserved in ShaA-types but not in ShaAB-types, partially affected on the antiport activity. Mutation in Asp-50 in TM-2 resulted in a unexpected phenotype: mutants retained the wild type level of ability to confer NaCl resistance to the Na+/H+ antiporter-deficient E. coli KNabc, but showed a very low antiport activity. The acidic group of Asp-50 and Asp-103 was not essential for the function. Our results suggested that these acidic residues are functionally involved in the ion transport of Sha, and some of them probably in cation binding and/or translocation.  相似文献   
69.
We used a model intestinal solution to understand the mechanisms of cholesterol lowering by the addition of plant sterols. The experimental results of the competitive solubilization of cholesterol and β-sitosterol in vitro give useful information about these mechanisms. The states of the model intestinal solution as a solubilizer were analyzed by transmission electron microscopy (TEM) and dynamic light scattering (DLS) by changing the number of components, and the bile salt and phosphatidylcholine concentrations. There were aggregates of different sizes: liposomes and mixed micelles depending on their components and concentrations. The maximum solubilization of cholesterol increased from 0.2mM to 1.3mM when adding fatty compounds in the pure bile salts system, which is almost the same as the full components model intestinal solution. Therefore, an excessive intake of fatty compounds may also increase cholesterol absorption in vivo. Even if the components of the model intestinal solution were modified from the standard condition, there were not remarkable differences in the selectivity of cholesterol and β-sitosterol in competitive solubilization. With the addition of β-sitosterol, the maximum solubilization of cholesterol decreases to almost half of that in the system with only cholesterol, except for PC-rich systems. In general, the different structures of aggregates considerably influence the maximum solubilization of sterols but not the selectivity of cholesterol and β-sitosterol in the competitive solubilization. The Gibbs energy change (ΔG°) of the solubilization of β-sitosterol showed a more negative value than cholesterol by -4 to -6kJmol(-1), which indicates that β-sitosterol is energetically favored relative to cholesterol in the model intestinal solution, regardless of the different systems.  相似文献   
70.
Nonhuman primate AIDS models are essential for the analysis of AIDS pathogenesis and the evaluation of vaccine efficacy. Multiple studies on human immunodeficiency virus and simian immunodeficiency virus (SIV) infection have indicated the association of major histocompatibility complex class I (MHC-I) genotypes with rapid or slow AIDS progression. The accumulation of macaque groups that share not only a single MHC-I allele but also an MHC-I haplotype consisting of multiple polymorphic MHC-I loci would greatly contribute to the progress of AIDS research. Here, we investigated SIVmac239 infections in four groups of Burmese rhesus macaques sharing individual MHC-I haplotypes, referred to as A, E, B, and J. Out of 20 macaques belonging to A(+) (n = 6), E(+) (n = 6), B(+) (n = 4), and J(+) (n = 4) groups, 18 showed persistent viremia. Fifteen of them developed AIDS in 0.5 to 4 years, with the remaining three at 1 or 2 years under observation. A(+) animals, including two controllers, showed slower disease progression, whereas J(+) animals exhibited rapid progression. E(+) and B(+) animals showed intermediate plasma viral loads and survival periods. Gag-specific CD8(+) T-cell responses were efficiently induced in A(+) animals, while Nef-specific CD8(+) T-cell responses were in A(+), E(+), and B(+) animals. Multiple comparisons among these groups revealed significant differences in survival periods, peripheral CD4(+) T-cell decline, and SIV-specific CD4(+) T-cell polyfunctionality in the chronic phase. This study indicates the association of MHC-I haplotypes with AIDS progression and presents an AIDS model facilitating the analysis of virus-host immune interaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号