首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   418篇
  免费   24篇
  442篇
  2022年   9篇
  2021年   16篇
  2019年   4篇
  2018年   9篇
  2017年   7篇
  2016年   7篇
  2015年   17篇
  2014年   16篇
  2013年   29篇
  2012年   25篇
  2011年   25篇
  2010年   11篇
  2009年   8篇
  2008年   17篇
  2007年   18篇
  2006年   13篇
  2005年   18篇
  2004年   19篇
  2003年   7篇
  2002年   11篇
  2001年   15篇
  2000年   3篇
  1998年   3篇
  1996年   2篇
  1995年   3篇
  1994年   4篇
  1992年   7篇
  1991年   10篇
  1990年   9篇
  1989年   6篇
  1988年   6篇
  1987年   6篇
  1986年   4篇
  1985年   13篇
  1984年   4篇
  1983年   4篇
  1982年   2篇
  1981年   5篇
  1979年   7篇
  1978年   4篇
  1977年   3篇
  1975年   2篇
  1974年   3篇
  1973年   3篇
  1972年   6篇
  1970年   2篇
  1968年   2篇
  1967年   2篇
  1966年   4篇
  1960年   2篇
排序方式: 共有442条查询结果,搜索用时 15 毫秒
31.
A coordinated effort combining bioinformatic tools with high-throughput cell-based screening assays was implemented to identify novel factors involved in T-cell biology. We generated a unique library of cDNAs encoding predicted secreted and transmembrane domain-containing proteins generated by analyzing the Human Genome Sciences cDNA database with a combination of two algorithms that predict signal peptides. Supernatants from mammalian cells transiently transfected with this library were incubated with primary T cells and T-cell lines in several high-throughput assays. Here we describe the discovery of a T cell factor, TIP (T cell immunomodulatory protein), which does not show any homology to proteins with known function. Treatment of primary human and murine T cells with TIP in vitro resulted in the secretion of IFN-gamma, TNF-alpha, and IL-10, whereas in vivo TIP had a protective effect in a mouse acute graft-versus-host disease (GVHD) model. Therefore, combining functional genomics with high-throughput cell-based screening is a valuable and efficient approach to identifying immunomodulatory activities for novel proteins.  相似文献   
32.
Methionine metabolism plays a central role in methylation reactions, production of glutathione and methylarginines, and modulating homocysteine levels. The mechanisms by which these are affected in NAFLD are not fully understood. The aim is to perform a metabolomic, molecular and epigenetic analyses of hepatic methionine metabolism in diet-induced NAFLD. Female 129S1/SvlmJ;C57Bl/6J mice were fed a chow (n = 6) or high-fat high-cholesterol (HFHC) diet (n = 8) for 52 weeks. Metabolomic study, enzymatic expression and DNA methylation analyses were performed. HFHC diet led to weight gain, marked steatosis and extensive fibrosis. In the methionine cycle, hepatic methionine was depleted (30%, p< 0.01) while s-adenosylmethionine (SAM)/methionine ratio (p< 0.05), s-adenosylhomocysteine (SAH) (35%, p< 0.01) and homocysteine (25%, p< 0.01) were increased significantly. SAH hydrolase protein levels decreased significantly (p <0.01). Serine, a substrate for both homocysteine remethylation and transsulfuration, was depleted (45%, p< 0.01). In the transsulfuration pathway, cystathionine and cysteine trended upward while glutathione decreased significantly (p< 0.05). In the transmethylation pathway, levels of glycine N-methyltransferase (GNMT), the most abundant methyltransferase in the liver, decreased. The phosphatidylcholine (PC)/ phosphatidylethanolamine (PE) ratio increased significantly (p< 0.01), indicative of increased phosphatidylethanolamine methyltransferase (PEMT) activity. The protein levels of protein arginine methytransferase 1 (PRMT1) increased significantly, but its products, monomethylarginine (MMA) and asymmetric dimethylarginine (ADMA), decreased significantly. Circulating ADMA increased and approached significance (p< 0.06). Protein expression of methionine adenosyltransferase 1A, cystathionine β-synthase, γ-glutamylcysteine synthetase, betaine-homocysteine methyltransferase, and methionine synthase remained unchanged. Although gene expression of the DNA methyltransferase Dnmt3a decreased, the global DNA methylation was unaltered. Among individual genes, only HMG-CoA reductase (Hmgcr) was hypermethylated, and no methylation changes were observed in fatty acid synthase (Fasn), nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (Nfκb1), c-Jun, B-cell lymphoma 2 (Bcl-2) and Caspase 3. NAFLD was associated with hepatic methionine deficiency and homocysteine elevation, resulting mainly from impaired homocysteine remethylation, and aberrancy in methyltransferase reactions. Despite increased PRMT1 expression, hepatic ADMA was depleted while circulating ADMA was increased, suggesting increased export to circulation.  相似文献   
33.
34.
A sensitive, selective and high throughput liquid chromatography tandem mass spectrometry (LC–ESI-MS/MS) method has been developed for the determination of teriflunomide, an active metabolite of leflunomide in human plasma. Plasma samples were prepared by liquid–liquid extraction of teriflunomide and valsartan as internal standard (IS) in ethyl acetate from 200 μL human plasma. The chromatographic separation was achieved on an Inertsil ODS-3 C18 (50 mm × 4.6 mm, 3 μm) analytical column using isocratic mobile phase, consisting of 20 mM ammonium acetate–methanol (25:75, v/v), at a flow-rate of 0.8 mL/min. The precursor → product ion transition for teriflunomide (m/z 269.0 → 82.0) and IS (m/z 434.1 → 350.3) were monitored on a triple quadrupole mass spectrometer, operating in the multiple reaction monitoring (MRM) and negative ion mode. The method was validated over a wide dynamic concentration range of 10.1–4001 ng/mL. Matrix effect was assessed by post-column infusion experiment and the mean process efficiency were 91.7% and 88.2% for teriflunomide and IS respectively. The method was rugged and rapid with a total run time of 2.0 min and is applied to a bioequivalence study of 20 mg leflunomide (test and reference) tablet formulation in 12 healthy Indian male subjects under fasting condition.  相似文献   
35.
Summary Albino mice were exposed to constant light for 7 days and were then transferred to periodic light. After initial photic damage and partial cell loss, the remaining visual cells recovered and survived as a stable population. Regions of the outer nuclear layer containing 4–6 rows of nuclei were more affected than those containing 6–10 rows. Changes in the synaptic structures in the receptor terminals of these two regions were recorded after varying survival periods. Some of the rod terminals had multiple synaptic ribbons and larger numbers of horizontal cell processes and bipolar cell dendrites. The number of terminals with multiple ribbons increased during recovery in periodic light. Morphometry demonstrated that the perimeters of horizontal and bipolar cell processes within the rod terminals were significantly larger than those in age-matched control mice, especially 4 weeks after recovery; they remained significantly larger than controls after 2 and 3 months. We suggest that partial loss of rod cells within a group of cells that are synaptically related to a common bipolar or horizontal cell results in synaptic growth inside the terminals of the surviving cells.  相似文献   
36.
37.
In a given environment, plants are constantly exposed to multitudes of stimuli. These stimuli are sensed and transduced to generate a diverse array of responses by several signal transduction pathways. Calcium (Ca2+) signaling is one such important pathway involved in transducing a large number of stimuli or signals in both animals and plants. Ca2+ engages a plethora of decoders to mediate signaling in plants. Among these groups of decoders, the sensor responder complex of calcineurin B‐like protein (CBL) and CBL‐interacting protein kinases (CIPKs) play a very significant role in transducing these signals. The signal transduction mechanism in most cases is phosphorylation events, but some structural role for the pair has also come to light recently. In this review, we discuss the structural nature of the sensor‐responder duo; their mechanism of substrate phosphorylation and also their structural role in modulating targets. Moreover, the mechanism of complex formation and mechanistic role of protein phosphatases with CBL–CIPK module has been mentioned. A comparison of CBL–CIPK with other decoders of Ca2+ signaling in plants also signifies the relatedness and diversity in signaling pathways. Further an attempt has been made to compare this aspect of Ca2+ signaling pathways in different plant species to develop a holistic understanding of conservation of stimulus–response‐coupling mediated by this Ca2+–CBL–CIPK module.  相似文献   
38.
One-third of the world''s reef-building corals are facing heightened extinction risk from climate change and other anthropogenic impacts. Previous studies have shown that such threats are not distributed randomly across the coral tree of life, and future extinctions have the potential to disproportionately reduce the phylogenetic diversity of this group on a global scale. However, the impact of such losses on a regional scale remains poorly known. In this study, we use phylogenetic metrics in conjunction with geographical distributions of living reef coral species to model how extinctions are likely to affect evolutionary diversity across different ecoregions. Based on two measures—phylogenetic diversity and phylogenetic species variability—we highlight regions with the largest losses of evolutionary diversity and hence of potential conservation interest. Notably, the projected loss of evolutionary diversity is relatively low in the most species-rich areas such as the Coral Triangle, while many regions with fewer species stand to lose much larger shares of their diversity. We also suggest that for complex ecosystems like coral reefs it is important to consider changes in phylogenetic species variability; areas with disproportionate declines in this measure should be of concern even if phylogenetic diversity is not as impacted. These findings underscore the importance of integrating evolutionary history into conservation planning for safeguarding the future diversity of coral reefs.  相似文献   
39.
The maintenance of endoplasmic reticulum (ER) homeostasis is a critical aspect of determining cell fate and requires a properly functioning unfolded protein response (UPR). We have discovered a previously unknown role of a post-translational modification termed adenylylation/AMPylation in regulating signal transduction events during UPR induction. A family of enzymes, defined by the presence of a Fic (filamentation induced by cAMP) domain, catalyzes this adenylylation reaction. The human genome encodes a single Fic protein, called HYPE (Huntingtin yeast interacting protein E), with adenylyltransferase activity but unknown physiological target(s). Here, we demonstrate that HYPE localizes to the lumen of the endoplasmic reticulum via its hydrophobic N terminus and adenylylates the ER molecular chaperone, BiP, at Ser-365 and Thr-366. BiP functions as a sentinel for protein misfolding and maintains ER homeostasis. We found that adenylylation enhances BiP''s ATPase activity, which is required for refolding misfolded proteins while coping with ER stress. Accordingly, HYPE expression levels increase upon stress. Furthermore, siRNA-mediated knockdown of HYPE prevents the induction of an unfolded protein response. Thus, we identify HYPE as a new UPR regulator and provide the first functional data for Fic-mediated adenylylation in mammalian signaling.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号