全文获取类型
收费全文 | 137篇 |
免费 | 2篇 |
专业分类
139篇 |
出版年
2023年 | 1篇 |
2021年 | 4篇 |
2020年 | 1篇 |
2019年 | 5篇 |
2018年 | 4篇 |
2017年 | 1篇 |
2016年 | 5篇 |
2015年 | 15篇 |
2014年 | 8篇 |
2013年 | 11篇 |
2012年 | 15篇 |
2011年 | 10篇 |
2010年 | 7篇 |
2009年 | 3篇 |
2008年 | 4篇 |
2007年 | 3篇 |
2006年 | 5篇 |
2005年 | 2篇 |
2004年 | 4篇 |
2003年 | 3篇 |
2001年 | 1篇 |
2000年 | 2篇 |
1999年 | 4篇 |
1998年 | 4篇 |
1997年 | 2篇 |
1996年 | 1篇 |
1995年 | 4篇 |
1994年 | 3篇 |
1993年 | 2篇 |
1990年 | 1篇 |
1988年 | 1篇 |
1985年 | 1篇 |
1981年 | 1篇 |
1977年 | 1篇 |
排序方式: 共有139条查询结果,搜索用时 10 毫秒
131.
132.
133.
134.
Carvalho CP Oliveira RB Britan A Santos-Silva JC Boschero AC Meda P Collares-Buzato CB 《American journal of physiology. Endocrinology and metabolism》2012,303(1):E144-E151
Gap junctional intercellular communication between β-cells is crucial for proper insulin biosynthesis and secretion. The aim of this work was to investigate the expression of connexin (Cx)36 at the protein level as well as the function and structure of gap junctions (GJ) made by this protein in the endocrine pancreas of prediabetic mice. C57BL/6 mice were fed a high-fat (HF) or regular chow diet for 60 days. HF-fed mice became obese and prediabetic, as shown by peripheral insulin resistance, moderate hyperglycemia, hyperinsulinemia, and compensatory increase in endocrine pancreas mass. Compared with control mice, prediabetic animals showed a significant decrease in insulin-secretory response to glucose and displayed a significant reduction in islet Cx36 protein. Ultrastructural analysis further showed that prediabetic mice had GJ plaques about one-half the size of those of the control group. Microinjection of isolated pancreatic islets with ethidium bromide revealed that prediabetic mice featured a β-cell-β-cell coupling 30% lower than that of control animals. We conclude that β-cell-β-cell coupling mediated by Cx36 made-channels is impaired in prediabetic mice, suggesting a role of Cx36-dependent cell-to-cell communication in the pathogenesis of the early β-cell dysfunctions that lead to type 2-diabetes. 相似文献
135.
Amalia Kallergi Enrique AsinGarcia Vitor AP Martins dos Santos Laurens Landeweerd 《EMBO reports》2021,22(1)
Biosafety is a major challenge for developing for synthetic organisms. An early focus on application and their context could assist with the design of appropriate genetic safeguards. Subject Categories: Synthetic Biology & Biotechnology, S&S: Economics & BusinessOne of the goals of synthetic biology is the development of robust chassis cells for their application in medicine, agriculture, and the food, chemical and environmental industries. These cells can be streamlined by removing undesirable features and can be augmented with desirable functionalities to design an optimized organism. In a direct analogy with a car chassis, they provide the frame for different modules or “plug‐in” regulatory networks, metabolic pathways, or safety elements. In an effort to ensure a safe microbial chassis upfront, safety measures are implemented as genetic safeguards to limit risks such as unwanted cellular proliferation or horizontal gene transfer. Examples of this technology include complex genetic circuits, sophisticated metabolic dependencies (auxotrophies), and altered genomes (Schmidt & de Lorenzo, 2016; Asin‐Garcia et al, 2020). Much like seat belts or airbags in cars, these built‐in measures increase the safety of the chassis and of any organisms derived from it. Indeed, when it comes to safety, synthetic biology can still learn from a century‐old technology such as cars about the significance of context for the development of biosafety technologies.Every car today has seat belts installed by default. Yet, seat belts were not always a standard component; in fact, they were not even designed for cars to begin with. The original 2‐point belts were first used in aviation and only slowly introduced for motorized vehicles. Only after some redesign, the now‐common 3‐point car seat belts would become the life‐saving equipment that they are today. A proper understanding of the context of their application was therefore one of the crucial factors for their success and wide adoption. Context matters: It provides meaning for and defines what a technological application is best suited for. What was true for seat belts may be also true for biosafety technologies such as genetic safeguards.
… when it comes to safety, synthetic biology can still learn from a century‐old technology such as cars about the significance of context for the development of biosafety technologies.Society has a much higher awareness of technology’s risks compared to the early days of cars. Society today requires that technological risks are anticipated and assessed before an innovation or its applications are widely deployed. In addition, society increasingly demands that research and innovation take into account societal needs and values. This has led to, among others, the Responsible Research and Innovation (RRI; von Schomberg, 2013) concept that has become prominent in European science policy. In a nutshell, RRI requires that innovative products and processes align with societal needs, expectations, and values in consultation with stakeholders. RRI and similar frameworks suggest that synthetic biology must anticipate and respond not only to risks, but also to societal views that frame its evaluation and risk assessment. 相似文献
136.
137.
138.
AAM Coelho-Castelo AP Trombone RS Rosada RR Santos Jr VLD Bonato A Sartori CL Silva 《Genetic vaccines and therapy》2006,4(1):1-10
In order to assess a new strategy of DNA vaccine for a more complete understanding of its action in immune response, it is important to determine the in vivo biodistribution fate and antigen expression. In previous studies, our group focused on the prophylactic and therapeutic use of a plasmid DNA encoding the Mycobacterium leprae 65-kDa heat shock protein (Hsp65) and achieved an efficient immune response induction as well as protection against virulent M. tuberculosis challenge. In the present study, we examined in vivo tissue distribution of naked DNA-Hsp65 vaccine, the Hsp65 message, genome integration and methylation status of plasmid DNA. The DNA-Hsp65 was detectable in several tissue types, indicating that DNA-Hsp65 disseminates widely throughout the body. The biodistribution was dose-dependent. In contrast, RT-PCR detected the Hsp65 message for at least 15 days in muscle or liver tissue from immunized mice. We also analyzed the methylation status and integration of the injected plasmid DNA into the host cellular genome. The bacterial methylation pattern persisted for at least 6 months, indicating that the plasmid DNA-Hsp65 does not replicate in mammalian tissue, and Southern blot analysis showed that plasmid DNA was not integrated. These results have important implications for the use of DNA-Hsp65 vaccine in a clinical setting and open new perspectives for DNA vaccines and new considerations about the inoculation site and delivery system. 相似文献
139.
Summary The differences between Anisopodus White, 1853 and Hyperplatys Haldeman, 1847 are discussed and the gender of the latter is corrected. Notes on Hyperplatys pusillus (Bates, 1863) are provided. Hyperplatys nigrisparsus is considered a new rank for H. pusillus nigrisparsus (Bates, 1885). This species is newly recorded from Brazil (Amazonas). Alcidion laetulum Bates, 1880 (currently Nealcidion laetulum), Alcidion costatum Monné & Martins, 1976 (currently Nealcidion costatum), and Nealcidion murinum Monné, 1998, are synonymized with Alcidion bispinum Bates, 1863 (currently Nealcidion bispinum). Anisopodus melzeri Gilmour, 1965 is transferred to Hyperplatys with a new record from the Brazilian state of Mato Grosso do Sul. Notes on a second specimen of Confluentia colombiana (Gilmour, 1950) are provided. Three new species are described from Ecuador: Nealcidion kayi n. sp. (Acanthocinini), Hyperplatys pichinchensis n. sp. (Acanthocinini) and Confluentia quijos n. sp. (Colobotheini). 相似文献