首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   676篇
  免费   87篇
  2023年   5篇
  2022年   7篇
  2021年   12篇
  2020年   10篇
  2019年   8篇
  2018年   8篇
  2017年   9篇
  2016年   11篇
  2015年   35篇
  2014年   26篇
  2013年   39篇
  2012年   54篇
  2011年   37篇
  2010年   25篇
  2009年   20篇
  2008年   34篇
  2007年   23篇
  2006年   34篇
  2005年   25篇
  2004年   21篇
  2003年   27篇
  2002年   16篇
  2001年   22篇
  2000年   18篇
  1999年   15篇
  1998年   6篇
  1997年   6篇
  1996年   4篇
  1994年   7篇
  1992年   13篇
  1991年   15篇
  1990年   16篇
  1989年   10篇
  1988年   10篇
  1987年   10篇
  1986年   8篇
  1985年   10篇
  1984年   9篇
  1983年   16篇
  1982年   8篇
  1981年   4篇
  1980年   6篇
  1979年   7篇
  1977年   7篇
  1974年   5篇
  1973年   7篇
  1969年   5篇
  1968年   3篇
  1967年   3篇
  1965年   4篇
排序方式: 共有763条查询结果,搜索用时 46 毫秒
651.
Hydrolysis of D-valyl-L-leucyl-L-lysine 4-nitroanilide (1), D-valyl-L-leucyl-L-arginine 4-nitroanilide (2), and N alpha-p-tosyl-L-arginine methyl ester (3) by human tissue kallikrein was studied throughout a wide range of substrate concentrations. At low substrate concentrations, the hydrolysis followed Michaelis-Menten kinetics but, at higher substrate concentrations, a deviation from Michaelis-Menten behavior was observed. With the nitroanilides, a significant increase in hydrolysis rates was observed, while with the ester, a significant decrease in hydrolysis rates was observed. The results for substrates (1) and (3) can be accounted for by a model based on the hypothesis that a second substrate molecule binds to the ES complex to produce a more active or an inactive SES complex. The deviation observed for substrate (2) can be explained as a bimolecular reaction between the enzyme-substrate complex and a free substrate molecule.  相似文献   
652.
Distraction osteogenesis has been used increasingly for midfacial advancement in patients with syndromic craniosynostosis and in severe developmental hypoplasia of the midface. In these patients, the degree of advancement required is often so great that restriction of the adjacent soft tissues may preclude stable advancement in one stage. Whereas distraction is an ideal solution by which to gradually lengthen both the bones and the soft tissues, potential problems remain in translating the distraction forces to the midface. In these patients, severe developmental hypoplasia may be associated with weak union between the zygoma and the maxilla, increasing the chance of zygomaticomaxillary dysjunction when using internal devices that translate distraction force to the maxilla through the zygoma. Eight cases are reported in which either internal or external distraction systems were used for midface advancement following Le Fort III (n = 7) or monobloc (n = 1) osteotomies. Cases of patients in whom hypoplasia at the zygomaticomaxillary junction altered or impaired plans for midface distraction were reported from three host institutions. Seven patients had midface hypoplasia associated with syndromic craniosynostosis, and one patient had severe developmental midface hypoplasia. The distraction protocol was modified to successfully complete midface advancement in light of weakness at the zygomaticomaxillary junction in seven patients. Modifications included change from an internal to an external distraction system in two patients, rigid fixation and bone graft stabilization of the midface in one patient, and plate stabilization of a fractured or unstable zygomaticomaxillary junction followed by resumption of internal distraction in four patients. Previous infection and bone loss involving both malar complexes precluded one patient from being a candidate for an internal distraction system. Using a problem-based approach, successful advancement of the midface ranging from 9 to 26 mm at the occlusal level as measured by preoperative and postoperative cephalograms was undergone by all patients. Advantages and disadvantages of the respective distraction systems are reviewed to better understand unique patient characteristics leading to the successful use of these devices for correction of severe midface hypoplasia.  相似文献   
653.
We employed a quantitative cell fusion assay to identify structural domains of CD46 required for its function as a receptor for human herpesvirus 6 (HHV-6). We examined the activities of recombinant variants of CD46, including different isoforms as well as engineered truncations and molecular chimeras with decay-accelerating factor, a related protein in the family of regulators of complement activation (RCA). We observed strong receptor activity for all four CD46 isoforms, which differ in the membrane-proximal extracellular and cytoplasmic domains, indicating that the critical determinants for HHV-6 receptor activity reside outside the C-terminal portion of CD46. Analysis of the short consensus repeat (SCR) regions that comprise most of the extracellular portion of CD46 indicated a strong dependence on SCRs 2 and 3 and no requirement for SCRs 1 or 4. Fusion-inhibition studies with SCR-specific monoclonal antibodies supported the essential role of SCRs 2 and 3 in HHV-6 receptor activity. These findings contrast markedly with fusion mediated by measles virus glycoproteins for which we observed a strict dependence on SCRs 1 and 2, consistent with previous reports. These results expand the emerging notion that CD46 and other members of the RCA family are co-opted in distinct manners by different infectious pathogens.  相似文献   
654.
655.
Lysine is catabolyzed by the bifunctional enzyme lysine 2-oxoglutarate reductase-saccharopine dehydrogenase (LOR-SDH) in both animals and plants. LOR condenses lysine and 2-oxoglutarate into saccharopine, using NADPH as cofactor and SDH converts saccharopine into alpha-aminoadipate delta-semialdehyde and glutamic acid, using NAD as cofactor. The distribution pattern of LOR and SDH among different tissues of Phaseolus vulgaris was determined. The hypocotyl contained the highest specific activity, whereas in seeds the activities of LOR and SDH were below the limit of detection. Precipitation of hypocotyl proteins with increasing concentrations of PEG 8000 revealed one broad peak of SDH activity, indicating that two isoforms may be present, a bifunctional LOR-SDH and possibly a monofunctional SDH. During the purification of the hypocotyl enzyme, the LOR activity proved to be very unstable, following ion-exchange chromatography. Depending on the purification procedure, the protein eluted as a monomer of 91-94 kDa containing only SDH activity, or as a dimer of 190 kDa with both, LOR and SDH activities, eluting together.  相似文献   
656.
Human herpesvirus 6 (HHV-6) is a potentially immunosuppressive agent that has been suggested to act as a cofactor in the progression of human immunodeficiency virus disease. However, the lack of suitable experimental models has hampered the elucidation of the mechanisms of HHV-6-mediated immune suppression. Here, we used ex vivo lymphoid tissue to investigate the cellular tropism and pathogenic mechanisms of HHV-6. Viral strains belonging to both HHV-6 subgroups (A and B) were able to productively infect human tonsil tissue fragments in the absence of exogenous stimulation. The majority of viral antigen-expressing cells were CD4(+) T lymphocytes expressing a nonnaive phenotype, while CD8(+) T cells were efficiently infected only with HHV-6A. Accordingly, HHV-6A infection resulted in the depletion of both CD4(+) and CD8(+) T cells, whereas in HHV-6B-infected tissue CD4(+) T cells were predominantly depleted. The expression of different cellular antigens was dramatically altered in HHV-6-infected tissues: whereas CD4 was upregulated, both CD46, which serves as a cellular receptor for HHV-6, and CD3 were downmodulated. However, CD3 downmodulation was restricted to infected cells, while the loss of CD46 expression was generalized. Moreover, HHV-6 infection markedly enhanced the production of the CC chemokine RANTES, whereas other cytokines and chemokines were only marginally affected. These results provide the first evidence, in a physiologically relevant study model, that HHV-6 can severely affect the physiology of secondary lymphoid organs through direct infection of T lymphocytes and modulation of key membrane receptors and chemokines.  相似文献   
657.
Chromosomal rearrangements linking the promoter(s) and N-terminal domain of unrelated gene(s) to the C terminus of RET result in constitutively activated chimeric forms of the receptor in thyroid cells (RET/PTC). RET/PTC rearrangements are thought to be tumor-initiating events; however, the early biological consequences of RET/PTC activation are unknown. To explore this, we generated clonal lines derived from well-differentiated rat thyroid PCCL3 cells with doxycycline-inducible expression of either RET/PTC1 or RET/PTC3. As previously shown in other cell types, RET/PTC1 and RET/PTC3 oligomerized and displayed constitutive tyrosine kinase activity. Neither RET/PTC1 nor RET/PTC3 conferred cells with the ability to grow in the absence of TSH, likely because of concomitant stimulation of both DNA synthesis and apoptosis, resulting in no net growth in the cell population. Effects of RET/PTC on DNA synthesis and apoptosis did not require direct interaction of the oncoprotein with either Shc or phospholipase Cgamma. Acute expression of the oncoprotein decreased TSH-mediated growth stimulation due to interference of TSH signaling by RET/PTC at multiple levels. Taken together, these data indicate that RET/PTC is a weak tumor-initiating event and that TSH action is disrupted by this oncoprotein at several points, and also predict that secondary genetic or epigenetic changes are required for clonal expansion.  相似文献   
658.
The addition of novel amino acids to the genetic code of Escherichia coli involves the generation of an aminoacyl-tRNA synthetase and tRNA pair that is ‘orthogonal’, meaning that it functions independently of the synthetases and tRNAs endogenous to E.coli. The amino acid specificity of the orthogonal synthetase is then modified to charge the corresponding orthogonal tRNA with an unnatural amino acid that is subsequently incorporated into a polypeptide in response to a nonsense or missense codon. Here we report the development of an orthogonal glutamic acid synthetase and tRNA pair. The tRNA is derived from the consensus sequence obtained from a multiple sequence alignment of archaeal tRNAGlu sequences. The glutamyl-tRNA synthetase is from the achaebacterium Pyrococcus horikoshii. The new orthogonal pair suppresses amber nonsense codons with an efficiency roughly comparable to that of the orthogonal tyrosine pair derived from Methanococcus jannaschii, which has been used to selectively incorporate a variety of unnatural amino acids into proteins in E.coli. Development of the glutamic acid orthogonal pair increases the potential diversity of unnatural amino acid structures that may be incorporated into proteins in E.coli.  相似文献   
659.
The bacteria Xylella fastidiosa is the causative agent of a number of economically important crop diseases, including citrus variegated chlorosis. Although its complete genome is already sequenced, X. fastidiosa is very poorly characterized by biochemical approaches at the protein level. In an initial effort to characterize protein expression in X. fastidiosa we used one- and two-dimensional gel electrophoresis and mass spectrometry to identify the products of 142 genes present in a whole cell extract and in an extracellular fraction of the citrus isolated strain 9a5c. Of particular interest for the study of pathogenesis are adhesion and secreted proteins. Homologs to proteins from three different adhesion systems (type IV fimbriae, mrk pili and hsf surface fibrils) were found to be coexpressed, the last two being detected only as multimeric complexes in the high molecular weight region of one-dimensional electrophoresis gels. Using a procedure to extract secreted proteins as well as proteins weakly attached to the cell surface we identified 30 different proteins including toxins, adhesion related proteins, antioxidant enzymes, different types of proteases and 16 hypothetical proteins. These data suggest that the intercellular space of X. fastidiosa colonies is a multifunctional microenvironment containing proteins related to in vivo bacterial survival and pathogenesis. A codon usage analysis of the most expressed proteins from the whole cell extract revealed a low biased distribution, which we propose is related to the slow growing nature of X. fastidiosa. A database of the X. fastidiosa proteome was developed and can be accessed via the internet (URL: www.proteome.ibi.unicamp.br).  相似文献   
660.
With a novel method of eliminating spermatogenesis in host animals, male germ cells isolated from mice with targeted overexpression of glial cell line-derived neurotrophic factor (GDNF) were transplanted to evaluate their ability to reproduce the phenotype previously found in the transgenic animals. Successful depletion of endogenous spermatogenesis was achieved using fractionated ionizing irradiation. A dose of 1.5 Gy followed by a dose of 12 Gy after 24 h reduced the percentage of tubule cross-sections displaying endogenous spermatogenesis to approximately 3% and 10% as evidenced by histologic evaluation of testes at 12 and 21 wk, respectively, after irradiation. At this dose, no apparent harmful side effects were noted in the animals. Upon transplantation, GDNF-overexpressing germ cells were found to be able to repopulate the irradiated testes and to form clusters of spermatogonia-like cells resembling those found in the overexpressing donor mice. The cluster cells in transplanted host testes expressed human GDNF, as had been shown previously for clusters in donor animals, and both were strongly positive for the tyrosine kinase receptor Ret. Thus, we devised an efficient method for depleting the seminiferous epithelium of host mice without appreciable adverse effects. In these host mice, GDNF-overexpressing cells reproduced the aberrant phenotype found in the donor transgenic mice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号