首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   676篇
  免费   87篇
  2023年   5篇
  2022年   7篇
  2021年   12篇
  2020年   10篇
  2019年   8篇
  2018年   8篇
  2017年   9篇
  2016年   11篇
  2015年   35篇
  2014年   26篇
  2013年   39篇
  2012年   54篇
  2011年   37篇
  2010年   25篇
  2009年   20篇
  2008年   34篇
  2007年   23篇
  2006年   34篇
  2005年   25篇
  2004年   21篇
  2003年   27篇
  2002年   16篇
  2001年   22篇
  2000年   18篇
  1999年   15篇
  1998年   6篇
  1997年   6篇
  1996年   4篇
  1994年   7篇
  1992年   13篇
  1991年   15篇
  1990年   16篇
  1989年   10篇
  1988年   10篇
  1987年   10篇
  1986年   8篇
  1985年   10篇
  1984年   9篇
  1983年   16篇
  1982年   8篇
  1981年   4篇
  1980年   6篇
  1979年   7篇
  1977年   7篇
  1974年   5篇
  1973年   7篇
  1969年   5篇
  1968年   3篇
  1967年   3篇
  1965年   4篇
排序方式: 共有763条查询结果,搜索用时 31 毫秒
641.
Human pancreatic ribonuclease (RNase 1) is expressed in many tissues; has several important enzymatic and biological activities, including efficient cleavage of single-stranded RNA, double-stranded RNA and double-stranded RNA-DNA hybrids, digestion of dietary RNA, regulation of vascular homeostasis, inactivation of the HIV, activation of immature dendritic cells and induction of cytokine production; and furthermore shows potential as an anti-tumor agent. The solution structure and dynamics of uncomplexed, wild-type RNase 1 have been determined by NMR spectroscopy methods to better understand these activities. The family of 20 structures determined on the basis of 6115 unambiguous nuclear Overhauser enhancements is well resolved (pairwise backbone RMSD = 1.07 Å) and has the classic RNase A type of tertiary structure. Important structural differences compared with previously determined crystal structures of RNase 1 variants or inhibitor-bound complexes are observed in the conformation of loop regions and side chains implicated in the enzymatic as well as biological activities and binding to the cytoplasmic RNase inhibitor. Multiple side chain conformations observed for key surface residues are proposed to be crucial for membrane binding as well as translocation and efficient RNA hydrolysis. 15N-1H relaxation measurements interpreted with the standard and our extended Lipari-Szabo formalism reveal rigid regions and identify more dynamic loop regions. Some of the most dynamic areas are key for binding to the cytoplasmic RNase inhibitor. This finding and the important differences observed between the structure in solution and that bound to the inhibitor are indications that RNase 1 to inhibitor binding can be better described by the “induced fit” model rather than the rigid “lock-into-key” mechanism. Translational diffusion measurements reveal that RNase 1 is predominantly dimeric above 1 mM concentration; the possible implications of this dimeric state for the remarkable biological properties of RNase 1 are discussed.  相似文献   
642.
Despite the fundamental importance and high level of compartmentation of mitochondrial nucleotide metabolism in plants, our knowledge concerning the transport of nucleotides across intracellular membranes remains far from complete. Study of a previously uncharacterized Arabidopsis (Arabidopsis thaliana) gene (At4g01100) revealed it to be a novel adenine nucleotide transporter, designated ADNT1, belonging to the mitochondrial carrier family. The ADNT1 gene shows broad expression at the organ level. Green fluorescent protein-based cell biological analysis demonstrated targeting of ADNT1 to mitochondria. While analysis of the expression of beta-glucuronidase fusion proteins suggested that it was expressed across a broad range of tissue types, it was most highly expressed in root tips. Direct transport assays with recombinant and reconstituted ADNT1 were utilized to demonstrate that this protein displays a relatively narrow substrate specificity largely confined to adenylates and their closest analogs. ATP uptake was markedly inhibited by the presence of other adenylates and general inhibitors of mitochondrial transport but not by bongkrekate or carboxyatractyloside, inhibitors of the previously characterized ADP/ATP carrier. Furthermore, the kinetics are substantially different from those of this carrier, with ADNT1 preferring AMP to ADP. Finally, isolation and characterization of a T-DNA insertional knockout mutant of ADNT1, alongside complementation and antisense approaches, demonstrated that although deficiency of this transporter did not seem to greatly alter photosynthetic metabolism, it did result in reduced root growth and respiration. These findings are discussed in the context of a potential function for ADNT1 in the provision of the energy required to support growth in heterotrophic plant tissues.  相似文献   
643.
To improve radioimmunotherapy with Auger electron emitters, we assessed whether the biological efficiency of (125)I varied according to its localization. A-431 and SK-OV-3 carcinoma cells were incubated with increasing activities (0-4 MBq/ml) of (125)I-labeled vectors targeting the cell membrane, the cytoplasm or the nucleus. We then measured cell survival by clonogenic assay and the mean radiation dose to the nucleus by assessing the cellular medical internal radiation dose (MIRD). The relationship between survival and the radiation dose delivered was investigated with a linear mixed regression model. For each cell line, we obtained dose-response curves for the three targets and the reference values (i.e., the dose leading to 75, 50 or 37% survival). When cell survival was expressed as a function of the total cumulative decays, nuclear (125)I disintegrations were more harmful than disintegrations in the cytoplasm or at the cell membrane. However, when survival was expressed as a function of the mean radiation dose to the nucleus, toxicity was significantly higher when (125)I was targeted to the cell membrane than to the cytoplasm. These findings indicate that the membrane is a more sensitive target than the cytoplasm for the dense ionization produced by Auger electrons. Moreover, cell membrane targeting is as cytotoxic as nuclear targeting in SK-OV-3 cells. We suggest that targeting the membrane rather than the cytoplasm may contribute to the development of more efficient radioimmunotherapies based on Auger electron radiation, also because most of the available vectors are directed against cell surface antigens.  相似文献   
644.
Although imatinib mesylate (IM) has revolutionized the treatment of chronic myeloid leukemia (CML), some patients develop resistance with progression of leukemia. Alternative or additional targeting of signaling pathways deregulated in bcr-abl-driven CML cells may provide a feasible option for improving clinical response and overcoming resistance. In this study, we show that carboxyamidotriazole (CAI), an orally bioavailable calcium influx and signal transduction inhibitor, is equally effective in inhibiting the proliferation and bcr-abl dependent- and independent-signaling pathways in imatinib-resistant CML cells. CAI inhibits phosphorylation of cellular proteins including STAT5 and CrkL at concentrations that induce apoptosis in IM-resistant CML cells. The combination of imatinib and CAI also down-regulated bcr-abl protein levels. Since CAI is already available for clinical use, these results suggest that it may be an effective addition to the armamentarium of drugs for the treatment of CML.  相似文献   
645.
Pyrazolo[3,4-d]pyrimidine derivatives 15, active as c-Src inhibitors, have been selected to be formulated as drug-loaded human serum albumin (HSA) nanoparticles, with the aim of improving their solubility and pharmacokinetic properties. The present study includes the optimization of a desolvation method-based procedure for preparing HSA nanoparticles. First, characterization by HPLC-MS and Dynamic Light Scattering (DLS) showed a good entrapment efficacy, a controllable particle size (between 100 and 200 nm) and an optimal stability over time, confirmed by an in vitro drug release assay. Then, 14 and the corresponding NPs were tested for their antiproliferative activity against neuroblastoma SH-SY5Y cell line. Notably, 3-NPs and 4-NPs were identified as the most promising formulation showing a profitable balance of stability, small size and a similar activity compared to the free drugs in cell-based assays. In addition, albumin formulations increase the solubility of pyrazolo[3,4-d]pyrimidine avoiding the use of DMSO as solubilizing agent.  相似文献   
646.
Understanding the ecological, behavioural and evolutionary response of organisms to changing environments is of primary importance in a human‐altered world. It is crucial to elucidate how human activities alter gene flow and what are the consequences for the genetic structure of a species. We studied two lineages of the Egyptian fruit bat (Rousettus aegyptiacus) throughout the contact zone between mesic and arid Ecozones in the Middle East to evaluate the species' response to the growing proportion of human‐altered habitats in the desert. We integrated population genetics, morphometrics and movement ecology to analyse population structure, morphological variation and habitat use from GPS‐ or radio‐tagged individuals from both desert and Mediterranean areas. We classified the spatial distribution and environmental stratification by describing physical–geographical conditions and land cover. We analysed this information to estimate patch occupancy and used an isolation‐by‐resistance approach to model gene flow patterns. Our results suggest that lineages from desert and Mediterranean habitats, despite their admixture, are isolated by environment and by adaptation supporting their classification as ecotypes. We found a positive effect of human‐altered habitats on patch occupancy and habitat use of fruit bats by increasing the availability of roosting and foraging areas. While this commensalism promotes the distribution of fruit bats throughout the Middle East, gene flow between colonies has not been altered by human activities. This discrepancy between habitat use and gene flow patterns may, therefore, be explained by the breeding system of the species and modifications of natal dispersal patterns.  相似文献   
647.
Long non‐coding RNAs (lncRNAs) have been implicated in the regulation of chromatin conformation and epigenetic patterns. lncRNA expression levels are widely taken as an indicator for functional properties. However, the role of RNA processing in modulating distinct features of the same lncRNA is less understood. The establishment of heterochromatin at rRNA genes depends on the processing of IGS‐rRNA into pRNA, a reaction that is impaired in embryonic stem cells (ESCs) and activated only upon differentiation. The production of mature pRNA is essential since it guides the repressor TIP5 to rRNA genes, and IGS‐rRNA abolishes this process. Through screening for IGS‐rRNA‐binding proteins, we here identify the RNA helicase DHX9 as a regulator of pRNA processing. DHX9 binds to rRNA genes only upon ESC differentiation and its activity guides TIP5 to rRNA genes and establishes heterochromatin. Remarkably, ESCs depleted of DHX9 are unable to differentiate and this phenotype is reverted by the addition of pRNA, whereas providing IGS‐rRNA and pRNA mutants deficient for TIP5 binding are not sufficient. Our results reveal insights into lncRNA biogenesis during development and support a model in which the state of rRNA gene chromatin is part of the regulatory network that controls exit from pluripotency and initiation of differentiation pathways.  相似文献   
648.
649.
650.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号