首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   578篇
  免费   50篇
  628篇
  2023年   2篇
  2022年   9篇
  2021年   9篇
  2020年   9篇
  2019年   12篇
  2018年   20篇
  2017年   17篇
  2016年   14篇
  2015年   29篇
  2014年   33篇
  2013年   46篇
  2012年   46篇
  2011年   33篇
  2010年   39篇
  2009年   18篇
  2008年   32篇
  2007年   45篇
  2006年   30篇
  2005年   24篇
  2004年   27篇
  2003年   30篇
  2002年   27篇
  2001年   7篇
  2000年   3篇
  1999年   4篇
  1998年   8篇
  1997年   6篇
  1996年   5篇
  1995年   3篇
  1994年   3篇
  1993年   5篇
  1992年   3篇
  1991年   1篇
  1989年   3篇
  1988年   2篇
  1987年   3篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1983年   4篇
  1982年   1篇
  1981年   1篇
  1978年   2篇
  1976年   1篇
  1974年   1篇
  1973年   2篇
  1969年   2篇
  1931年   1篇
排序方式: 共有628条查询结果,搜索用时 15 毫秒
611.
Krabbe disease or globoid cell leukodystropy is a lysosomal disorder caused by a deficiency of galactocerebrosidase (GALC) activity. This results in defects in myelin that lead to severe symptoms and early death in most human patients and animals with this disease. With the cloning of the GALC gene and the availability of the mouse model, called twitcher, it was important to evaluate the effects of providing GALC via a retroviral vector to oligodendrocytes in culture. After differentiation, the untransduced cells from normal mice extended highly branched processes while those from the twitcher mice did not. oligodendrocytes in culture can be readily transduced to produce much higher than normal levels of GALC activity. Transduced normal and twitcher cells formed clusters when plated at high density. Transduction of twitcher oligodendrocytes plated at lower density, followed by differentiation, resulted in some cells having a completely normal appearance with highly branched processes. Other cells showed retraction and fragmentation. Perhaps over expression of GALC activity may be detrimental to oligodendrocytes. These studies demonstrate that the phenotype of twitcher oligodendrocytes can be corrected by providing GALC via gene transfer, and this could lead the way to future studies to treat this disease.  相似文献   
612.
AimThe main purpose of this study is to perform a dosimetric comparison on target volumes and organs at risks (OARs) between prostate intensity modulated treatment plans (IMRT) optimized with different multileaf collimators (MLCs).BackgroundThe use of MLCs with a small leaf width in the IMRT optimization may improve conformity around the tumor target whilst reducing the dose to normal tissues.Materials and methodsTwo linacs mounting MLCs with 5 and 10 mm leaf-width, respectively, implemented in Pinnacle3 treatment planning system were used for this work. Nineteen patients with prostate carcinoma undergoing a radiotherapy treatment were enrolled. Treatment planning with different setup arrangements (7 and 5 beams) were performed for each patient and each machine. Dose volume histograms (DVHs) cut-off points were used in the treatment planning comparison.ResultsComparable planning target volume (PTV) coverage was obtained with 7- and 5-beam configuration (both with 5 and 10 mm MLC leaf-width). The comparison of bladder and rectum DVH cut-off points for the 5-beam arrangement shows that 52.6% of the plans optimized with a larger leaf-width did not satisfy at least one of the OARs’ constraints. This percentage is reduced to 10.5% for the smaller leaf-width. If a 7-beam arrangement is used the value of 52.6% decreases to 21.1% while the value of 10.5% remains unchanged.ConclusionMLCs collimators with different widths and number of leaves lead to a comparable prostate treatment planning if a proper adjustment is made of the number of gantry angles.  相似文献   
613.
614.
The GE81112 tetrapeptides (1–3) represent a structurally unique class of antibiotics, acting as specific inhibitors of prokaryotic protein synthesis. Here we report the cloning and sequencing of the GE81112 biosynthetic gene cluster from Streptomyces sp. L-49973 and the development of a genetic manipulation system for Streptomyces sp. L-49973. The biosynthetic gene cluster for the tetrapeptide antibiotic GE81112 (getA-N) was identified within a 61.7-kb region comprising 29 open reading frames (open reading frames), 14 of which were assigned to the biosynthetic gene cluster. Sequence analysis revealed the GE81112 cluster to consist of six nonribosomal peptide synthetase (NRPS) genes encoding incomplete di-domain NRPS modules and a single free standing NRPS domain as well as genes encoding other biosynthetic and modifying proteins. The involvement of the cloned gene cluster in GE81112 biosynthesis was confirmed by inactivating the NRPS gene getE resulting in a GE81112 production abolished mutant. In addition, we characterized the NRPS A-domains from the pathway by expression in Escherichia coli and in vitro enzymatic assays. The previously unknown stereochemistry of most chiral centers in GE81112 was established from a combined chemical and biosynthetic approach. Taken together, these findings have allowed us to propose a rational model for GE81112 biosynthesis. The results further open the door to developing new derivatives of these promising antibiotic compounds by genetic engineering.  相似文献   
615.
The sperm nuclear basic proteins (SNBPs) of the marine annelid worm Chaetopterus variopedatus have been shown previously to consist of a mixture of two SNBPs: histone H1-like (CvH1) and C.variopedatus protamine-like (CvPL). Here, we report the structural characterization of CvPL. The protein has a molecular weight of 8370.5 Da, a K/R ratio of 0.34, and a secondary structure, which are intermediate between those of protamine (P) and protamine-like (PL) SNBPs. The N-terminal sequence of CvPL shows a high extent of similarity with the arginine-rich C-terminal domain of chordate PL-type SNBPs. Furthermore, the protein binds to DNA in a similar fashion as vertebrate PLs and their own CvH1, but in a way that is different from that of the lysine-rich somatic H1 histones. We have experimentally determined the molar ratio CvH1:CvPL to be ~1:6 in C. variopedatus sperm. Based on all of these, a model is proposed for the organization of the sperm chromatin by CvH1 and CvPL.  相似文献   
616.
Natural cartilage remodels both in vivo and in vitro in response to mechanical stresses, hence mechanical stimulation is believed to be a potential tool to modulate extra-cellular matrix synthesis in tissue-engineered cartilage. Fluid-induced shear is known to enhance chondrogenesis in engineered cartilage constructs. The quantification of the hydrodynamic environment is a condition required to study the biochemical response to shear of 3D engineered cell systems. We developed a computational model of culture medium flow through the microstructure of a porous scaffold, during direct- perfused culture. The 3D solid model of the scaffold micro-geometry was reconstructed from 250 micro-computed tomography (micro-CT) images. The results of the fluid dynamic simulations were analyzed at the central portions of the fluid domain, to avoid boundary effects. The average, median and mode shear stress values calculated at the scaffold walls were 3.48, 2.90, and 2.45 mPa respectively, at a flow rate of 0.5 cm(3)/min, perfused through a 15 mm diameter scaffold, at an inlet fluid velocity of 53 microm/s. These results were compared to results estimated using a simplified micro-scale model and to results estimated using an analytical macro-scale porous model. The predictions given by the CT-based model are being used in conjunction with an experimental bioreactor model, in order to quantify the effects of fluid-dynamic shear on the growth modulation of tissue-engineered cartilage constructs, to potentially enhance tissue growth in vitro.  相似文献   
617.
Susceptibility of different mouse strains to varying levels of Taenia taeniaeformis eggs has been studied. C3H are shown to be susceptible to any quantity of eggs. However C57 and NMRI are only susceptible to 1–2 eggs, while larvae from an infection of 30–50 eggs are precociously destroyed. Sometimes fertile larvae can also develop in resistant strains of mice infected with some hundred eggs. In C3H the challenge larvae are unable to survive even from an infection given 24–48 h post-first inoculum. The hypothesis is proposed that in resistant strains, infection with 30–50 eggs induces a more rapid immune response which becomes effective while the larva is still vulnerable; in massive infections, however, immune paralysis may occur. Although susceptible strains allow primary infections to develop, they show resistance to challenge infections because larvae are destroyed before they become insusceptible to host attack.  相似文献   
618.
The aim of this work was to assess the antimicrobial efficacy on Pseudomonas aeruginosa of nanomicelles loaded with curcumin (CUR) alone and activated by blue laser light in an antimicrobial photodynamic therapy (APDT) approach. First, free CUR in liquid suspension and loaded in three amphiphilic nanomicelles (CUR-DAPMA, CUR-SPD and CUR-SPM) were tested both on bacteria and keratinocytes. While free CUR exerted limited efficacy showing moderate cytotoxicity, a strong inhibition of bacterial growth was obtained using all three nanosystems without toxicity on eukaryotic cells. CUR-SPM emerged as the most effective, and was therefore employed in APDT experiments. Among the three sublethal blue laser (λ 445 nm) protocols tested, the ones characterized by a fluence of 18 and 30 J/cm2 further decreased the antimicrobial concentration to 50 nM. The combination of blue laser APDT with CUR-SPM nanomicelles results in an effective synergistic activity that represents a promising novel therapeutic approach on resistant species.  相似文献   
619.
620.
Both the proper functioning of the female reproductive tract (FRT) and normal placental development are essential for women’s health, wellbeing, and pregnancy outcome. The study of the FRT in humans has been challenging due to limitations in the in vitro and in vivo tools available. Recent developments in 3D organoid technology that model the different regions of the FRT include organoids of the ovaries, fallopian tubes, endometrium and cervix, as well as placental trophoblast. These models are opening up new avenues to investigate the normal biology and pathology of the FRT. In this review, we discuss the advances, potential, and limitations of organoid cultures of the human FRT.Subject terms: Cell biology, Physiology, Diseases

■.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号