首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5466篇
  免费   572篇
  国内免费   1篇
  6039篇
  2023年   23篇
  2022年   63篇
  2021年   120篇
  2020年   81篇
  2019年   125篇
  2018年   150篇
  2017年   124篇
  2016年   186篇
  2015年   264篇
  2014年   292篇
  2013年   323篇
  2012年   422篇
  2011年   356篇
  2010年   240篇
  2009年   196篇
  2008年   276篇
  2007年   231篇
  2006年   228篇
  2005年   210篇
  2004年   190篇
  2003年   199篇
  2002年   180篇
  2001年   133篇
  2000年   133篇
  1999年   113篇
  1998年   55篇
  1997年   52篇
  1996年   57篇
  1995年   47篇
  1994年   52篇
  1993年   46篇
  1992年   80篇
  1991年   71篇
  1990年   76篇
  1989年   59篇
  1988年   59篇
  1987年   53篇
  1986年   38篇
  1985年   43篇
  1984年   28篇
  1983年   38篇
  1982年   39篇
  1981年   33篇
  1980年   20篇
  1979年   31篇
  1977年   26篇
  1975年   19篇
  1974年   20篇
  1973年   18篇
  1968年   17篇
排序方式: 共有6039条查询结果,搜索用时 0 毫秒
911.
The young and expanded leaf micromorphology and ultrastructure of Eucalyptus grandis 2 E. urophylla juvenile plants, cultivated in greenhouse and field conditions, were analyzed by scanning and transmission electron microscopy. In greenhouse leaves epicuticular wax needles covered the abaxial and adaxial surfaces. On the adaxial surface, the needles form an atypical arrangement in lines, mainly over the anticlinal wall of epidermis cells. After plant transfer to field conditions, the organization of epicuticular wax was altered forming amorphous layers on the adaxial leaf surface, in contrast to the abaxial surface, which maintained the wax needle cover. In both culture conditions the lamellar cuticle formed on the young leaves surface disappeared during leaf enlargement. The ex vitro environment induced the development of hypostomatic leaves. The dorsiventral organization of greenhouse leaves was replaced by an isobilateral arrangement in field conditions with concomitant aerial space reduction. Results suggest that those structural changes may be some of the strategies to avoid excessive plant transpiration during Eucalyptus hybrid plants' acclimatization.  相似文献   
912.
913.
914.
This Letter describes the discovery and SAR of three novel series of mGluR5 non-competitive antagonists/negative allosteric modulators (NAMs) not based on manipulation of an MPEP/MTEP chemotype. This work demonstrates fundamentally new mGluR5 NAM chemotypes with submicromolar potencies, and the first example of a mode of pharmacology ‘switch’ to provide PAMs with a non-MPEP scaffold.  相似文献   
915.
Enterotoxigenic Escherichia coli (ETEC) is a leading cause of traveler''s diarrhea worldwide. One major virulence factor released by this pathogen is the heat-labile enterotoxin LT, which upsets the balance of electrolytes in the intestine. After export, LT binds to lipopolysaccharide (LPS) on the bacterial surface. Although the residues responsible for LT''s binding to its host receptor are known, the portion of the toxin which mediates LPS binding has not been defined previously. Here, we describe mutations in LT that impair the binding of the toxin to the external surface of E. coli without altering holotoxin assembly. One mutation in particular, T47A, nearly abrogates surface binding without adversely affecting expression or secretion in ETEC. Interestingly, T47A is able to bind mutant E. coli expressing highly truncated forms of LPS, indicating that LT binding to wild-type LPS may be due primarily to association with an outer core sugar. Consequently, we have identified a region of LT distinct from the pocket involved in eukaryotic receptor binding that is responsible for binding to the surface of E. coli.Enterotoxigenic Escherichia coli (ETEC), a common etiologic agent behind traveler''s diarrhea, is also a significant cause of mortality worldwide (38). Many strains of ETEC elaborate a virulence factor called heat-labile enterotoxin or LT (34). LT is an AB5 toxin, consisting of a single A subunit, LTA, and a ring of five B subunits, LTB (33). LTB mediates the toxin''s binding properties, and LTA ADP ribosylates host G proteins, increasing levels of cyclic AMP and causing the efflux of electrolytes and water into the intestinal lumen (27, 35). Each subunit of LT is translated separately from a bicistronic message and then transported to the periplasm, where holotoxin assembly spontaneously occurs (16). Subsequent export into the extracellular milieu is carried out by the main terminal branch of the general secretory pathway (31, 36).LT binds eukaryotic cells via an interaction between LTB and host gangliosides, primarily the monosialoganglioside GM1 (35). The binding site for GM1, situated at the interface of two B subunits, has been identified by crystallography (26). GM1 binding can be strongly impaired by a point mutation in LTB that converts Gly-33 to an aspartic acid residue (37). LT is highly homologous to cholera toxin (CT), both in sequence and structure (7, 35), contributing to ETEC''s potentially cholera-like symptoms (39).Previous work in our lab has demonstrated that LT possesses an additional binding capacity beyond its affinity for host glycolipids: the ability to associate with lipopolysaccharide (LPS) on the surface of E. coli (20). LPS, the major component of the outer leaflet of the gram-negative outer membrane, consists of a characteristic lipid moiety, lipid A, covalently linked to a chain of sugar residues (30). In bacteria like E. coli, this sugar chain can be further divided into an inner core oligosaccharide of around five sugars, an outer core of four to six additional sugars, and in some cases a series of oligosaccharide repeats known as the O antigen. Lipid A itself cannot inhibit binding of soluble LT to cells containing full-length or truncated LPS, indicating that the LT-LPS interaction involves sugar residues on the surface of E. coli (19). The addition of the inner core sugar 3-deoxy-d-manno-octulosonic acid (Kdo) is the minimal lipid A modification required for LT binding, although longer oligosaccharide chains are preferred, and expression of a kinase that phosphorylates Kdo abrogates binding by LT (19). Competitive binding assays and microscopy with fluorescently labeled ETEC vesicles show that binding to GM1 and LPS can occur at the same time, revealing that the binding sites are distinct (20, 23). In contrast to LT''s ability to bind to the surface of ETEC, CT (or LT, when expressed heterologously) cannot bind Vibrio cells, presumably because Kdo is phosphorylated in Vibrio spp. (5).As a result of the LT-LPS surface interaction, over 95% of secreted LT is found associated with E. coli outer membrane vesicles (OMVs), rather than being secreted solubly (20). OMVs are spherical structures, 50 to 200 nm in diameter, that are derived from the outer membrane but also enclose periplasmic components (24). As such, active LT is found both on the surface of an OMV and within its lumen (21). ETEC releases a large amount of OMVs (40), and these vesicles may serve as vehicles for delivery of LT to host cells.Recent work by Holmner et al. has uncovered a third binding substrate for LT: human blood group A antigen (17, 18). This interaction was noted previously as a novel binding characteristic of artificially constructed CT-LT hybrid molecules, but it has now been shown to occur with wild-type LT as well (17, 18). LTB binding to sugar residues in the receptor molecule occurs at a site that is separate from the GM1-binding pocket, in the same region we proposed was involved in LPS binding (17, 19). While the severity of cholera disease symptoms has been linked to blood type (14), the effects of blood type on ETEC infection are less clear. However, it has been demonstrated that LT can use A antigen as a functional receptor in cultured human intestinal cells (11, 12), and one recent cohort study found an increased prevalence of ETEC-based diarrhea among children with A or AB blood type (29).We set out to generate a mutation in LT that reduces its LPS binding without adversely affecting its expression, secretion, or toxicity. In this work, we present the discovery of point mutations in LTB that impair its interactions with the bacterial surface. Examination of these mutations reveals an LPS binding pocket which shares residues with the blood sugar pocket. Binding studies of mutants to bacteria with truncated LPS provide a better understanding of the roles that inner and outer core sugars play in toxin binding, and expression, secretion, and toxicity studies demonstrate which mutant is a particularly good candidate for future research. These binding mutants may lead to further discovery of the role that surface binding plays in the pathogenesis associated with ETEC infection.  相似文献   
916.
917.
The wheat grain is the most important organ for human food and therefore is the target for much research focused on modifying its composition to improve nutritional and functional components. Genetic transformation provides a precise tool to alter the composition of wheat grain by expressing new genes or by down-regulating groups of proteins encoded by multigene families such as gliadins, which contain clusters of epitopes that are active groups in triggering celiac disease. For such work, specific promoters are required to express such constructs in the wheat endosperm. In the present study we report the isolation and characterization of a γ-gliadin promoter from transgenic wheat, and the analysis of gliadin synthesis during grain development in bread wheat by Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry (MALDI/TOF MS). The γ-gliadin promoter fragment was isolated from bread wheat by genome walking and was re-introduced, driving the expression of the gusA gene, by particle bombardment, giving fifteen independent transgenic lines. Detailed analysis of the sequence of the 885 bp promoter fragment showed that it contains three prolamin boxes but only one is conserved according to the consensus sequence reported. The AACA/TA motif is present twice in published γ-gliadin promoter sequences. The RY element i.e., CATGCAT or CATGCAC, is also present twice in the published promoter. Transgenic lines were classified as high, medium, and low expressers. The expression of the gusA gene was found only in the seeds of the transgenic lines. GUS staining was first detected in the outer endosperm of the lobes, and then it extended to the whole outer endosperm. GUS staining was not found in the aleurone layer nor in the embryo. The qRT-PCR data confirmed the data obtained by GUS staining. The expression of the gusA gene determined by qRT-PCR for the high expresser line (B281) was 4 and 8 times higher than that of medium (B282) and low (B286) expresser lines, respectively. MALDI/TOF-MS showed that gliadins exhibited different patterns of synthesis during the course of seed maturation. Thus, gliadins with masses higher than 36,000 Da were synthesised within the first 12 days post anthesis while those with masses lower than 36,000 Da were synthesised later. Results of GUS staining, qRT-PCR and MALDI/TOF-MS showed that the γ-gliadin promoter reported in this work could be a good candidate to downregulate wheat gliadins.  相似文献   
918.
Sperm acrosomal exocytosis is essential for successful fertilization, and the zona pellucida (ZP) has been classically considered as the primary initiator in vivo. At present, following what is referred to as primary binding of the sperm to the ZP, the acrosome reaction paradigm posits that the outer acrosomal membrane and plasma membrane fuse at random points, releasing the contents of the acrosome. It is then assumed that the inner acrosomal membrane mediates secondary binding of the sperm to the ZP. In the present work we used a live fluorescence imaging system and mouse sperm containing enhanced green fluorescent protein (EGFP) in their acrosomes. We compared the processes of acrosomal exocytosis stimulated by the calcium ionophore ionomycin or by solubilized ZP. As monitored by the loss of EGFP from the sperm, acrosomal exocytosis driven by these two agents occurred differently. When ionomycin was used, exocytosis started randomly (no preference for the anterior, middle or posterior acrosomal regions). In contrast, following treatment with solubilized ZP, the loss of acrosomal components always started at the posterior zone of the acrosome and progressed in an anterograde direction. The exocytosis was slower when stimulated with ZP and on the order of 10 sec, which is in accordance with other reports. These results demonstrate that ZP stimulates acrosomal exocytosis in an orderly manner and suggest that a receptor‐mediated event controls this process of membrane fusion and release of acrosomal components. These findings are incorporated into a model. J. Cell. Physiol. 220: 611–620, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
919.
920.
Post‐translational modification with ubiquitin is one of the most important mechanisms in the regulation of protein stability and function. However, the high reversibility of this modification is the main obstacle for the isolation and characterization of ubiquitylated proteins. To overcome this problem, we have developed tandem‐repeated ubiquitin‐binding entities (TUBEs) based on ubiquitin‐associated (UBA) domains. TUBEs recognize tetra‐ubiquitin with a markedly higher affinity than single UBA domains, allowing poly‐ubiquitylated proteins to be efficiently purified from cell extracts in native conditions. More significant is the fact that TUBEs protect poly‐ubiquitin‐conjugated proteins, such as p53 and IκBα, both from proteasomal degradation and de‐ubiquitylating activity present in cell extracts, as well as from existing proteasome and cysteine protease inhibitors. Therefore, these new ‘molecular traps’ should become valuable tools for purifying endogenous poly‐ubiquitylated proteins, thus contributing to a better characterization of many essential functions regulated by these post‐translational modifications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号