首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5466篇
  免费   572篇
  国内免费   1篇
  6039篇
  2023年   23篇
  2022年   63篇
  2021年   120篇
  2020年   81篇
  2019年   125篇
  2018年   150篇
  2017年   124篇
  2016年   186篇
  2015年   264篇
  2014年   292篇
  2013年   323篇
  2012年   422篇
  2011年   356篇
  2010年   240篇
  2009年   196篇
  2008年   276篇
  2007年   231篇
  2006年   228篇
  2005年   210篇
  2004年   190篇
  2003年   199篇
  2002年   180篇
  2001年   133篇
  2000年   133篇
  1999年   113篇
  1998年   55篇
  1997年   52篇
  1996年   57篇
  1995年   47篇
  1994年   52篇
  1993年   46篇
  1992年   80篇
  1991年   71篇
  1990年   76篇
  1989年   59篇
  1988年   59篇
  1987年   53篇
  1986年   38篇
  1985年   43篇
  1984年   28篇
  1983年   38篇
  1982年   39篇
  1981年   33篇
  1980年   20篇
  1979年   31篇
  1977年   26篇
  1975年   19篇
  1974年   20篇
  1973年   18篇
  1968年   17篇
排序方式: 共有6039条查询结果,搜索用时 15 毫秒
101.
102.
103.
Microfluidic technologies are highly adept at generating controllable compositional gradients in fluids, a feature that has accelerated the understanding of the importance of chemical gradients in biological processes. That said, the development of versatile methods to generate controllable compositional gradients in the solid‐state has been far more elusive. The ability to produce such gradients would provide access to extensive compositional libraries, thus enabling the high‐throughput exploration of the parametric landscape of functional solids and devices in a resource‐, time‐, and cost‐efficient manner. Herein, the synergic integration of microfluidic technologies is reported with blade coating to enable the controlled formation of compositional lateral gradients in solution. Subsequently, the transformation of liquid‐based compositional gradients into solid‐state thin films using this method is demonstrated. To demonstrate efficacy of the approach, microfluidic‐assisted blade coating is used to optimize blending ratios in organic solar cells. Importantly, this novel technology can be easily extended to other solution processable systems that require the formation of solid‐state compositional lateral gradients.  相似文献   
104.
Alzheimer’s disease (AD) is characterized by the appearance of amyloid‐β plaques, neurofibrillary tangles, and inflammation in brain regions involved in memory. Using mass spectrometry, we have quantified the phosphoproteome of the CK‐p25, 5XFAD, and Tau P301S mouse models of neurodegeneration. We identified a shared response involving Siglec‐F which was upregulated on a subset of reactive microglia. The human paralog Siglec‐8 was also upregulated on microglia in AD. Siglec‐F and Siglec‐8 were upregulated following microglial activation with interferon gamma (IFNγ) in BV‐2 cell line and human stem cell‐derived microglia models. Siglec‐F overexpression activates an endocytic and pyroptotic inflammatory response in BV‐2 cells, dependent on its sialic acid substrates and immunoreceptor tyrosine‐based inhibition motif (ITIM) phosphorylation sites. Related human Siglecs induced a similar response in BV‐2 cells. Collectively, our results point to an important role for mouse Siglec‐F and human Siglec‐8 in regulating microglial activation during neurodegeneration.  相似文献   
105.
106.
107.
Thiol‐based redox‐regulation is vital for coordinating chloroplast functions depending on illumination and has been throroughly investigated for thioredoxin‐dependent processes. In parallel, glutathione reductase (GR) maintains a highly reduced glutathione pool, enabling glutathione‐mediated redox buffering. Yet, how the redox cascades of the thioredoxin and glutathione redox machineries integrate metabolic regulation and detoxification of reactive oxygen species remains largely unresolved because null mutants of plastid/mitochondrial GR are embryo‐lethal in Arabidopsis thaliana. To investigate whether maintaining a highly reducing stromal glutathione redox potential (EGSH) via GR is necessary for functional photosynthesis and plant growth, we created knockout lines of the homologous enzyme in the model moss Physcomitrella patens. In these viable mutant lines, we found decreasing photosynthetic performance and plant growth with increasing light intensities, whereas ascorbate and zeaxanthin/antheraxanthin levels were elevated. By in vivo monitoring stromal EGSH dynamics, we show that stromal EGSH is highly reducing in wild‐type and clearly responsive to light, whereas an absence of GR leads to a partial glutathione oxidation, which is not rescued by light. By metabolic labelling, we reveal changing protein abundances in the GR knockout plants, pinpointing the adjustment of chloroplast proteostasis and the induction of plastid protein repair and degradation machineries. Our results indicate that the plastid thioredoxin system is not a functional backup for the plastid glutathione redox systems, whereas GR plays a critical role in maintaining efficient photosynthesis.  相似文献   
108.
Reactivation of the androgen receptor signaling pathway in the emasculated environment is the main reason for the occurrence of castration-resistant prostate cancer (CRPC). The immunophilin FKBP51, as a co-chaperone protein, together with Hsp90 help the correct folding of AR. Rapamycin is a known small-molecule inhibitor of FKBP51, but its effect on the FKBP51/AR signaling pathway is not clear. In this study, the interaction mechanism between FKBP51 and rapamycin was investigated using steady-state fluorescence quenching, X-ray crystallization, MTT assay, and qRT-PCR. Steady-state fluorescence quenching assay showed that rapamycin could interact with FKBP51. The crystal of the rapamycin-FKBP51 complex indicated that rapamycin occupies the hydrophobic binding pocket of FK1 domain which is vital for AR activity. The residues involving rapamycin binding are mainly hydrophobic and may overlap with the AR interaction site. Further assays showed that rapamycin could inhibit the androgen-dependent growth of human prostate cancer cells by down-regulating the expression levels of AR activated downstream genes. Taken together, our study demonstrates that rapamycin suppresses AR signaling pathway by interfering with the interaction between AR and FKBP51. The results of this study not only can provide useful information about the interaction mechanism between rapamycin and FKBP51, but also can provide new clues for the treatment of prostate cancer and castration-resistant prostate cancer.  相似文献   
109.
Studies have found that mutant, misfolded superoxide dismutase [Cu–Zn] (SOD1) can convert wild type SOD1 (wtSOD1) in a prion-like fashion, and that misfolded wtSOD1 can be propagated by release and uptake of protein aggregates. In developing a prion-like mechanism for this propagation of SOD1 misfolding we have previously shown how enervation of the SOD1 electrostatic loop (ESL), caused by the formation of transient non-obligate SOD1 oligomers, can lead to an experimentally observed gain of interaction (GOI) that results in the formation of SOD1 amyloid-like filaments. It has also been shown that freedom of ESL motion is essential to catalytic function. This work investigates the possibility that restricting ESL mobility might not only compromise superoxide catalytic activity but also serve to promote the peroxidase activity of SOD1, thus implicating the formation of SOD1 oligomers in both protein misfolding and in protein oxidation.  相似文献   
110.
Gigantism results when one lineage within a clade evolves extremely large body size relative to its small-bodied ancestors, a common phenomenon in animals. Theory predicts that the evolution of giants should be constrained by two tradeoffs. First, because body size is negatively correlated with population size, purifying selection is expected to be less efficient in species of large body size, leading to increased mutational load. Second, gigantism is achieved through generating a higher number of cells along with higher rates of cell proliferation, thus increasing the likelihood of cancer. To explore the genetic basis of gigantism in rodents and uncover genomic signatures of gigantism-related tradeoffs, we assembled a draft genome of the capybara (Hydrochoerus hydrochaeris), the world’s largest living rodent. We found that the genome-wide ratio of nonsynonymous to synonymous mutations (ω) is elevated in the capybara relative to other rodents, likely caused by a generation-time effect and consistent with a nearly neutral model of molecular evolution. A genome-wide scan for adaptive protein evolution in the capybara highlighted several genes controlling postnatal bone growth regulation and musculoskeletal development, which are relevant to anatomical and developmental modifications for an increase in overall body size. Capybara-specific gene-family expansions included a putative novel anticancer adaptation that involves T-cell-mediated tumor suppression, offering a potential resolution to the increased cancer risk in this lineage. Our comparative genomic results uncovered the signature of an intragenomic conflict where the evolution of gigantism in the capybara involved selection on genes and pathways that are directly linked to cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号