首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   279篇
  免费   23篇
  2023年   5篇
  2022年   7篇
  2021年   11篇
  2020年   4篇
  2019年   4篇
  2018年   5篇
  2017年   10篇
  2016年   11篇
  2015年   16篇
  2014年   23篇
  2013年   22篇
  2012年   35篇
  2011年   20篇
  2010年   20篇
  2009年   10篇
  2008年   20篇
  2007年   13篇
  2006年   13篇
  2005年   11篇
  2004年   13篇
  2003年   10篇
  2002年   4篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1992年   1篇
  1984年   1篇
  1983年   1篇
  1977年   1篇
  1974年   1篇
排序方式: 共有302条查询结果,搜索用时 31 毫秒
101.
Toll-like receptor 3 (TLR3), an antiviral innate immunity receptor recognizes double-stranded RNA, preferably of viral origin and induces type I interferon production, which causes maturation of phagocytes and subsequent release of chemical mediators from phagocytes against some viral infections. The present study has characterized TLR3 complementary DNA (cDNA) in buffalo (Bubalus bubalis) and nilgai (Boselaphus tragocamelus). TLR3 coding sequences of both buffalo and nilgai were amplified from cultured dendritic cell cDNA and cloned in pGEMT-easy vector for characterization by restriction endonucleases and nucleotide sequencing. Sequence analysis reveals that 2,715-bp-long TLR3 open reading frame encoding 904 amino acids in buffalo as well as nilgai is similar to that of cattle. Buffalo TLR3 has 98.6 and 97.9% identity at nucleotide level with nilgai and cattle, respectively. Likewise, buffalo TLR3 amino acids share 96.7% identity with cattle and 97.8% with nilgai. Non-synonymous substitutions exceeding synonymous substitutions indicate evolution of this receptor through positive selection among these three ruminant species. Buffalo and nilgai appear to have diverged from a common ancestor in phylogenetic analysis. Predicted protein structures of buffalo and nilgai TLR3 from deduced amino acid sequences indicate that the buffalo and nilgai TLR3 ectodomain may be more efficient in ligand binding than that of cattle. Furthermore, TLR3 messenger RNA expression in tissues as quantified by real-time PCR was found higher in nilgai than buffalo. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   
102.
Acute lung injury (ALI) and its severe form acute respiratory distress syndrome (ARDS) remain a major cause of morbidity and mortality in critically ill patients, and no specific therapies are still available to control the mortality rate. Thus, we explored the preventive and therapeutic effects of tannic acid (TA), a natural polyphenol in the context of ALI. We used in vivo and in vitro models, respectively, using lipopolysaccharide (LPS) to induce ALI in mice and exposing J774 and BEAS-2B cells to LPS. In both preventive and therapeutic approaches, TA attenuated LPS-induced histopathological alterations, lipid peroxidation, lung permeability, infiltration of inflammatory cells, and the expression of proinflammatory mediators. In addition, in-vitro study showed that TA treatment could reduce the expression of proinflammatory mediators. Further studies revealed that TA-dampened inflammatory responses by downregulating the LPS-induced toll-like receptor 4 (TLR4) expression and inhibiting extracellular-signal-regulated kinase (ERK)1/2 and p38 mitogen-activated protein kinase (MAPK) activation. Furthermore, cells treated with the inhibitors of ERK1/2 (PD98059) and p38 (SB203580) mitigated the expression of cytokines induced by LPS, thus suggesting that ERK1/2 and p38 activity are required for the inflammatory response. In conclusion, TA could attenuate LPS-induced inflammation and may be a potential therapeutic agent for ALI-associated inflammation in clinical settings.  相似文献   
103.

Background

There are limited data examining healthcare resource utilization in patients with recurrent Clostridium difficile infection (CDI).

Methods

Patients with CDI at a tertiary-care hospital in Houston, TX, were prospectively enrolled into an observational cohort study. Recurrence was assessed via follow-up phone calls. Patients with one or more recurrence were included in this study. The location at which healthcare was obtained by patients with recurrent CDI was identified along with hospital length of stay. CDI-attributable readmissions, defined as a positive toxin test within 48 hours of admission and a primary CDI diagnosis, were also assessed.

Results

372 primary cases of CDI were identified of whom 64 (17.2%) experienced at least one CDI recurrence. Twelve of 64 patients experienced 18 further episodes of CDI recurrence. Of these 64 patients, 33 (50.8%) patients with recurrent CDI were readmitted of which 6 (18.2%) required ICU care, 29 (45.3%) had outpatient care only, and 2 (3.1%) had an ED visit. Nineteen (55.9%) readmissions were defined as CDI-attributable. For patients with CDI-attributable readmission, the average length of stay was 6±6 days.

Conclusion

Recurrent CDI leads to significant healthcare resource utilization. Methods of reducing the burden of recurrent CDI should be further studied.  相似文献   
104.
GIPC (GAIP-interacting protein, C terminus) represents a new target class for the discovery of chemotherapeutics. While many of the current generation of anticancer agents function by directly binding to intracellular kinases or cell surface receptors, the disruption of cytosolic protein-protein interactions mediated by non-enzymatic domains is an underdeveloped avenue for inhibiting cancer growth. One such example is the PDZ domain of GIPC. Previously we developed a molecular probe, the cell-permeable octapeptide CR1023 (N-myristoyl-PSQSSSEA), which diminished proliferation of pancreatic cancer cells. We have expanded upon that discovery using a chemical modification approach and here report a series of cell-permeable, side chain-modified lipopeptides that target the GIPC PDZ domain in vitro and in vivo. These peptides exhibit significant activity against pancreatic and breast cancers, both in cellular and animal models. CR1166 (N-myristoyl-PSQSK(εN-4-bromobenzoyl)SK(εN-4-bromobenzoyl)A), bearing two halogenated aromatic units on alternate side chains, was found to be the most active compound, with pronounced down-regulation of EGFR/1GF-1R expression. We hypothesize that these organic acid-modified residues extend the productive reach of the peptide beyond the canonical binding pocket, which defines the limit of accessibility for the native proteinogenic sequences that the PDZ domain has evolved to recognize. Cell permeability is achieved with N-terminal lipidation using myristate, rather than a larger CPP (cell-penetrating peptide) sequence. This, in conjunction with optimization of targeting through side chain modification, has yielded an approach that will allow the discovery and development of next-generation cellular probes for GIPC PDZ as well as for other PDZ domains.  相似文献   
105.
The study of anticancer agents that act via stabilization of telomeric G-quadruplex DNA (G4DNA) is important because such agents often inhibit telomerase activity. Several types of G4DNA binding ligands are known. In these studies, the target structures often involve a single G4 DNA unit formed by short DNA telomeric sequences. However, the 3'-terminal single-stranded human telomeric DNA can form higher-order structures by clustering consecutive quadruplex units (dimers or n-mers). Herein, we present new synthetic gemini (twin) bisbenzimidazole ligands, in which the oligo-oxyethylene spacers join the two bisbenzimidazole units for the recognition of both monomeric and dimeric G4DNA, derived from d(T2AG3)4 and d(T2AG3)8 human telomeric DNA, respectively. The spacer between the two bisbenzimidazoles in the geminis plays a critical role in the G4DNA stability. We report here (i) synthesis of new effective gemini anticancer agents that are selectively more toxic towards the cancer cells than the corresponding normal cells; (ii) formation and characterization of G4DNA dimers in solution as well as computational construction of the dimeric G4DNA structures. The gemini ligands direct the folding of the single-stranded DNA into an unusually stable parallel-stranded G4DNA when it was formed in presence of the ligands in KCl solution and the gemini ligands show spacer length dependent potent telomerase inhibition properties.  相似文献   
106.
107.
Gauss's competitive exclusive principle states that two competing species having analogous environment cannot usually occupy the same space at a time but in order to exploit their common environment in a different manner, they can co-exist only when they are active in different times. On the other hand, several studies on predators in various natural and laboratory situations have shown that competitive coexistence can result from predation in a way by resisting any one prey species from becoming sufficiently abundant to outcompete other species such that the predator makes the coexistence possible. It has also been shown that the use of refuges by a fraction of the prey population exerts a stabilizing effect in the interacting population dynamics. Further, the field surveys in the Sundarban mangrove ecosystem reveal that two detritivorous fishes, viz. Liza parsia and Liza tade (prey population) coexist in nature with the presence of the predator fish population, viz. Lates calcarifer by using refuges.  相似文献   
108.
Pathogenic Klebsiella pneumoniae, resistant to beta-lactam and quinolone drugs, is widely recognized as important bacteria causing array of diseases. The resistance property is obtained by acquisition of plasmid encoded blaTEM, blaSHV, blaCTX-M, QNRA, QNRB and QNRS genes. The aim of this study was to document the prevalence and association of these resistant genes in K. pneumoniae infecting patients in India. Approximately 97 and 76.7 % of the 73 K. pneumoniae isolates showed resistance towards beta-lactam and quinolone drugs respectively. Bla genes were detected in 74 % of K. pneumoniae isolates; with prevalence in the following order: blaTEM > blaSHV > blaCTXM. QNR genes were detected in 67 % samples. Chi-square analysis revealed significant association between presence of bla and qnr genes in our study (P value = 0.000125). Sequence analysis of some blaTEM, blaSHV, blaCTX-M and QNRB PCR products revealed presence of blaTEM1 (GenBank accession: JN193522), blaTEM116 (JN193523 and JN193524), blaSHV11, blaCTXM72 variants (JF523199) and QNRB1 (JN193526 and JN193527) in our samples.  相似文献   
109.
Interpenetrating polymer network (IPN) hydrogel microspheres of sodium carboxymethyl cellulose (NaCMC) and poly(vinyl alcohol) (PVA) were prepared by water-in-oil (w/o) emulsion crosslinking method for oral controlled release delivery of a non-steroidal anti-inflammatory drug, diclofenac sodium (DS). The microspheres were prepared with various ratios of NaCMC to PVA, % drug loading and extent of crosslinking density at a fixed polymer weight. The prepared microspheres with loose and rigid surfaces were evidenced by scanning electron microscope (SEM). Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis confirmed the IPN formation. Differential scanning calorimetry (DSC) study was performed to understand the dispersion nature of drug after encapsulation. The in vitro drug release study was extensively evaluated depending on the process variables in both acid and alkaline media. All the formulations exhibited satisfactory physicochemical and in vitro release characteristics. Release data indicated a non-Fickian trend of drug release from the formulations. Based on the results of this study suggest that DS loaded IPN microspheres were suitable for oral controlled release application.  相似文献   
110.
A method of microwave (MW) assisted synthesis was employed to prepare cadmium sulfide (CdS) quantum dots (QDs) in dimethylformamide in the presence of poly(methyl methacrylate) (PMMA). The MW irradiation was carried out for a fixed time of 20-30 s and the size of QDs varied from 2.9-5.5 nm. Before each irradiation the solution was cooled down to ambient temperature and the irradiation process was repeated six times. An increase in the intensity and red shift of the characteristic UV-vis absorption peak originating from CdS QDs were observed with repeated MW irradiation, suggesting that the amount of generated CdS QDs increased within the PMMA network and aggregated with repeated MW irradiation. MW irradiation could influence selectively the nucleation and growing rates of PMMA-CdS QDs systems. The broadness and large Stokes shift of the emission from Cd(2+)-rich PMMA-CdS QDs was due to the surface trap state photoluminescence. The recombination of shallow trapped electrons and shallow trapped holes has been considered as the primary source of the surface trap state photoluminescence in Cd(2+)-rich PMMA-CdS QDs. The photoluminescence lifetime was observed to be decreased sharply when the amount of QDs was less, showing the emission decay was dependent on the surface property of PMMA-CdS QDs. The origin of the longer lifetime was due to the involvement of surface trap states and dependent on the amount of CdS QDs present within PMMA and its environment. The effect of the concentration of Cd(2+), S(2-) and PMMA on the generation of CdS QDs within PMMA and the effect of repeated MW irradiation on the optical properties was studied and the results are discussed in this article.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号