首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   218篇
  免费   21篇
  2023年   2篇
  2022年   5篇
  2021年   8篇
  2020年   3篇
  2019年   4篇
  2018年   5篇
  2017年   8篇
  2016年   9篇
  2015年   13篇
  2014年   20篇
  2013年   18篇
  2012年   28篇
  2011年   16篇
  2010年   13篇
  2009年   9篇
  2008年   17篇
  2007年   7篇
  2006年   10篇
  2005年   10篇
  2004年   12篇
  2003年   9篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1992年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有239条查询结果,搜索用时 15 毫秒
101.

Background

Rheumatic fever in childhood is the most common cause of Mitral Stenosis in developing countries. The disease is characterized by damaged and deformed mitral valves predisposing them to scarring and narrowing (stenosis) that results in left atrial hypertrophy followed by heart failure. Presently, echocardiography is the main imaging technique used to diagnose Mitral Stenosis. Despite the high prevalence and increased morbidity, no biochemical indicators are available for prediction, diagnosis and management of the disease. Adopting a proteomic approach to study Rheumatic Mitral Stenosis may therefore throw some light in this direction. In our study, we undertook plasma proteomics of human subjects suffering from Rheumatic Mitral Stenosis (n = 6) and Control subjects (n = 6). Six plasma samples, three each from the control and patient groups were pooled and subjected to low abundance protein enrichment. Pooled plasma samples (crude and equalized) were then subjected to in-solution trypsin digestion separately. Digests were analyzed using nano LC-MSE. Data was acquired with the Protein Lynx Global Server v2.5.2 software and searches made against reviewed Homo sapiens database (UniProtKB) for protein identification. Label-free protein quantification was performed in crude plasma only.

Results

A total of 130 proteins spanning 9–192 kDa were identified. Of these 83 proteins were common to both groups and 34 were differentially regulated. Functional annotation of overlapping and differential proteins revealed that more than 50% proteins are involved in inflammation and immune response. This was corroborated by findings from pathway analysis and histopathological studies on excised tissue sections of stenotic mitral valves. Verification of selected protein candidates by immunotechniques in crude plasma corroborated our findings from label-free protein quantification.

Conclusions

We propose that this protein profile of blood plasma, or any of the individual proteins, could serve as a focal point for future mechanistic studies on Mitral Stenosis. In addition, some of the proteins associated with this disorder may be candidate biomarkers for disease diagnosis and prognosis. Our findings might help to enrich existing knowledge on the molecular mechanisms involved in Mitral Stenosis and improve the current diagnostic tools in the long run.

Electronic supplementary material

The online version of this article (doi:10.1186/1559-0275-11-35) contains supplementary material, which is available to authorized users.  相似文献   
102.
Mandal S  Ray S  Roy SK 《Bio Systems》2009,95(1):30-34
The ascendancy concept aims at quantitatively describing the growth and development of an ecosystem as whole. Growth is an increase in the total system throughflow, while development is taken to be a rise in the average mutual information inherent in the network flow structure. As an ecosystem matures and goes through a series of successional stages, its ascendancy exhibits a propensity to increase. In any ecosystem the equilibrium condition may gradually turn into a chaotic situation for different reasons. In this paper a model is proposed of an aquatic ecosystem comprising of three groups, viz., phytoplankton, zooplankton and fish. Rate parameters are changed according to the change of the size of the organisms. The model is run in different conditions with gradual decrement of the body sizes of zooplankton. Allometric principle of the relationship of body size of zooplankton and two rate parameters (growth rate and half saturation constant) are incorporated in this model. According to allometric principle gradual decrement of body sizes of zooplankton consequently increases the grazing rate and decreases the half-saturation constant of this organisms. The system exhibits different states (equilibrium point--stable limit cycle--doubling and ultimately chaos) by gradual increase of zooplankton grazing rate and decrease of half-saturation constant. This paper tests the high level of ascendancy of the systems at the edge of oscillation before starting of the chaos. This high level of throughflow and mutual information, i.e. Ascendency supports the hypothesis that the system can coordinate the most complex behavior and shows maximum biocomplexity in this situation.  相似文献   
103.
With the rapid development of the ribosome field in recent years a quick, simple and high-throughput method for purification of the bacterial ribosome is in demand. We have designed a new strain of Escherichia coli (JE28) by an in-frame fusion of a nucleotide sequence encoding a hexa-histidine affinity tag at the 3′-end of the single copy rplL gene (encoding the ribosomal protein L12) at the chromosomal site of the wild-type strain MG1655. As a result, JE28 produces a homogeneous population of ribosomes (His)6-tagged at the C-termini of all four L12 proteins. Furthermore, we have developed a single-step, high-throughput method for purification of tetra-(His)6-tagged 70S ribosomes from this strain using affinity chromatography. These ribosomes, when compared with the conventionally purified ones in sucrose gradient centrifugation, 2D-gel, dipeptide formation and a full-length protein synthesis assay showed higher yield and activity. We further describe how this method can be adapted for purification of ribosomal subunits and mutant ribosomes. These methodologies could, in principle, also be used to purify any functional multimeric complex from the bacterial cell.  相似文献   
104.
Although the importance of RGS-GAIP-interacting protein (GIPC) in the biology of malignant cells is well known, the molecular mechanism of GIPC in the inhibition of tumor progression has not been identified. This study focused on elucidating the molecular role of GIPC in breast cancer progression. By using a human breast tumor specimen, an in vivo mouse model, and breast cancer cell lines, we showed for the first time that GIPC is involved in breast cancer progression through regulation of breast cancer cell proliferation, survival, and invasion. Furthermore, we found that the Akt/Mdm2/p53 axis, insulin-like growth factor-1 receptor, matrix metalloproteinase-9, and Cdc42 were downstream of GIPC signaling in breast cancer cells. Moreover, we showed that wild-type p53 reduced GIPC-induced breast cancer cell survival, whereas mutant p53 inhibited GIPC-induced cell invasion. Finally, we demonstrated that an N-myristoylated GIPC peptide (CR1023, N-myristoyl-PSQSSSEA) capable of blocking the PDZ domain of GIPC successfully inhibited MDA-MB-231 cell proliferation, survival, and further in vivo tumor growth. Taken together, these findings demonstrate the importance of GIPC in breast tumor progression, which has a potentially significant impact on the development of therapies against many common cancers expressing GIPC, including breast and renal cancer.  相似文献   
105.
Chromatographic separation of the methanolic extract of the leaves of Azadirachta indica led to the isolation of a sulfonoglycolipid characterized as a sulfonoquinovosyldiacylglyceride (SQDG), by extensive 2D NMR and mass spectral analysis. SQDG induces apoptosis in a dose dependent manner with IC(50) 8.3 μM against acute lymphoblastic leukemia (ALL) MOLT-4 cell lines. The compound showed significant DNA binding properties as evidenced by the enhancement of melting temperature and perturbation of the characteristic B-form in CD evidence of calf thymus DNA. The DNA binding was also characterized by isothermal calorimetry where a predominantly enthalpy driven binding to CT DNA was revealed.  相似文献   
106.
The Saccharomyces cerevisiae 2 micron plasmid exemplifies a benign but selfish genome, whose stability approaches that of the chromosomes of its host. The plasmid partitioning locus STB (stability locus) displays certain functional analogies with centromeres along with critical distinctions, a significant one being the absence of the kinetochore complex at STB. The remodels the structure of chromatin (RSC) chromatin remodeling complex, the nuclear motor Kip1, the histone H3 variant Cse4 and the cohesin complex associate with both loci. These factors appear to contribute to plasmid segregation either directly or indirectly through their roles in chromosome segregation. Assembly and disassembly of the plasmid-coded partitioning proteins Rep1 and Rep2 and host factors at STB follow a temporal hierarchy during the cell cycle. Assembly is initiated by STB association of [Rsc8-Rsc58], followed by [Rep1-Rep2-Kip1] and [Cse4-Rsc2-Sth1] recruitment, and culminates in cohesin assembly. Disassembly starts with dissociation of RSC components, is followed by cohesin disassembly and Cse4 exit during anaphase and late telophase, respectively. [Rep1-Rep2-Kip1] persists through G1 of the ensuing cell cycle. The de novo assembly of the ‘partitioning complex’ is cued by the innate cell cycle clock and is dependent on DNA replication. Shared functional attributes of STB and centromere (CEN) are consistent with a potential evolutionary link between them.  相似文献   
107.
A relatively simple method was developed to fabricate CrN/Cu nanocomposite coatings using pulsed DC magnetron sputtering for application in antibacterial activity. These nanocomposite coatings were applied on titanium (Ti)-modified stainless steel substrata (D-9 alloy) and the antibacterial activity of these coating with respect to the Gram-negative bacterium Pseudomonas aeruginosa was investigated qualitatively and quantitatively. Scanning electron microscopy, epifluorescence microscope analyses, and total viable counts confirmed that inclusion of copper in the CrN/Cu nanocomposite coatings provided antibacterial activity against P. aeruginosa. The quantitative examination of the bacterial activity of P. aeruginosa was estimated by the survival ratio as calculated from the number of viable cells which formed colonies on nutrient agar plates.  相似文献   
108.
Abstract

The binding of three analogues of the minor-groove binding antiviral antibiotic distamycin (Dst) with double-stranded (ds)-DNA were monitored using ds-DNA melting temperature (Tm) measurements, ethidium bromide (EtBr) displacement assay, footprinting analysis and induced circular dichroism (ICD). These compounds contained 3–5 N-methyl-pyrrole-car- boxamide units and lacked the N-terminal formamide unit present in Dst. These experiments suggested that the present analogues did not compromise their AT-specificity despite the deletion of the N-terminal formamide unit. The binding affinities, however, were significantly affected. Interestingly, the analogue with three N-methyl-pyrrole-carboxamide units exhibited an initial decrease in ICD at >40 mM salt concentrations. This was followed by a pronounced recovery of ICD at > 1.6 M salt concentrations, a phenomenon hitherto not observed with any other DNA binding molecules. The pentapyrrole analogue exhibited the highest binding affinity with CT-DNA under normal (40 mM) salt conditions. However, it suffered maximum relative dissociation under high salt conditions and did not exhibit any recovery in ICD at higher NaCl concentrations. The analogues possessing four and five pyrrole rings exhibited intense ICD signals with poly d(GC) in the ligand absorption region in the presence of 40 mM NaCl, unlike the one with three pyrrole rings. These ICD signals were however, highly susceptible to changes in ionic strength. Thus subtle modifications in the ligand molecular structure can have dramatic effect on their DNA binding properties.  相似文献   
109.
Mycobacterium spp., rod‐shaped cells belonging to the phylum Actinomycetes, lack the Min‐ and Noc/Slm systems responsible for preventing the placement of division sites at the poles or over the nucleoids to ensure septal assembly at mid‐cell. We show that the position for establishment of the FtsZ‐ring in exponentially growing Mycobacterium marinum and Mycobacterium smegmatis cells is nearly random, and that the cells often divide non‐medially, producing two unequal but viable daughters. Septal sites and cellular growth disclosed by staining with the membrane‐specific dye FM4‐64 and fluorescent antibiotic vancomycin (FL‐Vanco), respectively, showed that many division sites were off‐centre, often over the nucleoids, and that apical cell growth was frequently unequal at the two poles. DNA transfer through the division septum was detected, and translocation activity was supported by the presence of a putative mycobacterial DNA translocase (MSMEG2690) at the majority of the division sites. Time‐lapse imaging of single live cells through several generations confirmed both acentric division site placement and unequal polar growth in mycobacteria. Our evidence suggests that post‐septal DNA transport and unequal polar growth may compensate for the non‐medial division site placement in Mycobacterium spp.  相似文献   
110.
Helicobacter pylori causes gastritis, gastric ulcer and gastric cancer. Though DNA replication and its control are central to bacterial proliferation, pathogenesis, virulence and/or dormancy, our knowledge of DNA synthesis in slow growing pathogenic bacteria like H. pylori is still preliminary. Here, we review the current understanding of DNA replication, replication restart and recombinational repair in H. pylori. Several differences have been identified between the H. pylori and Escherichia coli replication machineries including the absence of DnaC, the helicase loader usually conserved in gram-negative bacteria. These differences suggest different mechanisms of DNA replication at initiation and restart of stalled forks in H. pylori.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号