首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   257篇
  免费   30篇
  2021年   1篇
  2020年   2篇
  2019年   4篇
  2018年   3篇
  2017年   2篇
  2016年   8篇
  2015年   12篇
  2014年   13篇
  2013年   17篇
  2012年   14篇
  2011年   20篇
  2010年   10篇
  2009年   11篇
  2008年   10篇
  2007年   18篇
  2006年   13篇
  2005年   10篇
  2004年   8篇
  2003年   8篇
  2002年   9篇
  2001年   3篇
  2000年   3篇
  1999年   2篇
  1998年   6篇
  1997年   4篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   5篇
  1991年   3篇
  1990年   4篇
  1989年   2篇
  1988年   8篇
  1987年   4篇
  1986年   5篇
  1985年   5篇
  1984年   3篇
  1983年   4篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1974年   8篇
  1973年   1篇
  1971年   2篇
  1968年   1篇
  1965年   1篇
  1964年   4篇
排序方式: 共有287条查询结果,搜索用时 31 毫秒
151.
152.
153.
Dynamics of filamentous viral RNPs prior to egress   总被引:1,自引:1,他引:0  
The final step in the maturation of paramyxoviruses, orthomyxoviruses and viruses of several other families, entails the budding of the viral nucleocapsid through the plasma membrane of the host cell. Many medically important viruses, such as influenza, parainfluenza, respiratory syncytial virus (RSV) and Ebola, can form filamentous particles when budding. Although filamentous virions have been previously studied, details of how viral filaments bud from the plasma membrane remain largely unknown. Using molecular beacon (MB)-fluorescent probes to image the viral genomic RNA (vRNA) of human RSV (hRSV) in live Vero cells, the dynamics of assembled viral filaments was observed to consist of three primary types of motion prior to egress from the plasma membrane: (i) filament projection and rotation, (ii) migration and (iii) non-directed motion. In addition, from information gained by imaging the 3D distribution of cellular vRNA, observing and characterizing vRNA dynamics, imaging vRNA/Myosin Va colocalization, and studying the effects of cytochalasin D (actin depolymerizing agent) exposure, a model for filamentous virion egress is presented.  相似文献   
154.
Numerous methods have been developed for immunogold labeling of thick, cryo-preserved biological specimens. However, most of the methods are permutations of chemical fixation and sample sectioning, which select and isolate the immunolabeled region of interest. We describe a method for combining immunogold labeling with cryo-electron microscopy (cryo-EM) and cryo-electron tomography (cryo-ET) of the surface proteins of intact mammalian cells or the surface glycoproteins of assembling and budding viruses in the context of virus-infected mammalian cells cultured on EM grids. In this method, the cells were maintained in culture media at physiologically relevant temperatures while sequentially incubated with the primary and secondary antibodies. Subsequently, the immunogold-labeled specimens were vitrified and observed under cryo-conditions in the transmission electron microscope. Cryo-EM and cryo-ET examination of the immunogold-labeled cells revealed the association of immunogold particles with the target antigens. Additionally, the cellular structure was unaltered by pre-immunolabeling chemical fixation and retained well-preserved plasma membranes, cytoskeletal elements, and macromolecular complexes. We think this technique will be of interest to cell biologists for cryo-EM and conventional studies of native cells and pathogen-infected cells.  相似文献   
155.
Only a small fraction of the antibodies in a traditional polyclonal antibody mixture recognize the target of interest, frequently resulting in undesirable polyreactivity. Here, we show that high-quality recombinant polyclonals, in which hundreds of different antibodies are all directed toward a target of interest, can be easily generated in vitro by combining phage and yeast display. We show that, unlike traditional polyclonals, which are limited resources, recombinant polyclonal antibodies can be amplified over one hundred million-fold without losing representation or functionality. Our protocol was tested on 9 different targets to demonstrate how the strategy allows the selective amplification of antibodies directed toward desirable target specific epitopes, such as those found in one protein but not a closely related one, and the elimination of antibodies recognizing common epitopes, without significant loss of diversity. These recombinant renewable polyclonal antibodies are usable in different assays, and can be generated in high throughput. This approach could potentially be used to develop highly specific recombinant renewable antibodies against all human gene products.  相似文献   
156.
157.
The BK polyomavirus (BKV) is widespread in the general population. In transplant recipients, the patients' weakened immune response may encourage reactivation of latent infection, leading to BKV-related diseases. Rapid and quantitative detection might help to delineate viral reactivation patterns and could thus play an important role in their clinical management. In our study we developed an "in-house" quantitative real-time PCR to detect BKV DNA. The effectiveness of this assay was evaluated by a retrospective analysis of 118 plasma specimens from 22 bone marrow transplant (BMT) recipients and 107 samples from immunocompetent subjects. Eight (36.3%) of the 22 bone marrow transplant recipients tested positive for BKV. The viral load varied from specimen to specimen (10 to 10(5) copies/ml). BKV related disease like hemorrhagic cystitis (HC) was diagnosed in three patients. Specimens from the control group all tested negative. Our results showed the high sensitivity of the real-time PCR, allowing accurate and reproducible measuring of the viral load in order to identify patients at risk for BKV-related diseases. With due caution in interpreting threshold values, the real-time PCR could provide a rapid, sensitive and specific tool for detecting BKV and distinguishing latent and active infection.  相似文献   
158.
The great challenges for researchers working in the field of vaccinology are optimizing DNA vaccines for use in humans or large animals and creating effective single-dose vaccines using appropriated controlled delivery systems. Plasmid DNA encoding the heat-shock protein 65 (hsp65) (DNAhsp65) has been shown to induce protective and therapeutic immune responses in a murine model of tuberculosis (TB). Despite the success of naked DNAhsp65-based vaccine to protect mice against TB, it requires multiple doses of high amounts of DNA for effective immunization. In order to optimize this DNA vaccine and simplify the vaccination schedule, we coencapsulated DNAhsp65 and the adjuvant trehalose dimycolate (TDM) into biodegradable poly (DL-lactide-co-glycolide) (PLGA) microspheres for a single dose administration. Moreover, a single-shot prime-boost vaccine formulation based on a mixture of two different PLGA microspheres, presenting faster and slower release of, respectively, DNAhsp65 and the recombinant hsp65 protein was also developed. These formulations were tested in mice as well as in guinea pigs by comparison with the efficacy and toxicity induced by the naked DNA preparation or BCG. The single-shot prime-boost formulation clearly presented good efficacy and diminished lung pathology in both mice and guinea pigs.  相似文献   
159.
Cryptococci survive and replicate within macrophages and can use exogenous arachidonic acid for the production of eicosanoids. Phospholipase B1 (PLB1) has a putative, but uninvestigated, role in these processes. We have shown that uptake and esterification of radiolabeled arachidonic, palmitic, and oleic acids by the Cryptococcus neoformans var. grubii H99 wild-type strain and its PLB1 deletion mutant strain (the Deltaplb1 strain) are independent of PLB1, except under hyperosmolar stress. Similarly, PLB1 was required for metabolism of 1-palmitoyl lysophosphatidylcholine (LysoPC), which is toxic to eukaryotic cell membranes, under hyperosmolar conditions. During both logarithmic and stationary phases of growth, the physiologically relevant phospholipids, dipalmitoyl phosphatidylcholine (DPPC) and dioleoyl phosphatidylcholine, were taken up and metabolized via PLB1. Exogenous DPPC did not enhance growth in the presence of glucose as a carbon source but could support it for at least 24 h in glucose-free medium. Detoxification of LysoPC by reacylation occurred in both the H99 wild-type and the Deltaplb1 strains in the presence of glucose, but PLB1 was required when LysoPC was the sole carbon source. This indicates that both energy-independent (via PLB1) and energy-dependent transacylation pathways are active in cryptococci. Phospholipase A(1) activity was identified by PLB1-independent degradation of 1-palmitoyl-2-arachidonoyl phosphatidylcholine, but the arachidonoyl LysoPC formed was not detoxified by reacylation. Using the human macrophage-like cell line THP-1, we demonstrated the PLB1-dependent incorporation of macrophage-derived arachidonic acid into cryptococcal lipids during cryptococcus-phagocyte interaction. This pool of arachidonate can be sequestered for eicosanoid production by the fungus and/or suppression of host phagocytic activity, thus diminishing the immune response.  相似文献   
160.
1. This work concerns the purification of a calf thymus protein that increases the binding of human 125I-labeled low density lipoprotein (LDL) on both human skin fibroblasts and a special line of rat liver cells, BRL 3A. 2. It was found that the thymus gland affects cholesterol metabolism via an activation of the LDL receptor pathway. 3. Moreover, the thymus protein active on the LDL receptor pathway has a different amino acid composition and molecular weight from other well-characterized thymic peptides.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号