首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1954篇
  免费   119篇
  2073篇
  2022年   12篇
  2021年   12篇
  2020年   9篇
  2019年   18篇
  2018年   16篇
  2017年   16篇
  2016年   34篇
  2015年   52篇
  2014年   44篇
  2013年   130篇
  2012年   88篇
  2011年   95篇
  2010年   61篇
  2009年   49篇
  2008年   89篇
  2007年   111篇
  2006年   98篇
  2005年   102篇
  2004年   87篇
  2003年   88篇
  2002年   68篇
  2001年   72篇
  2000年   83篇
  1999年   61篇
  1998年   28篇
  1997年   17篇
  1996年   21篇
  1995年   18篇
  1994年   17篇
  1993年   25篇
  1992年   31篇
  1991年   25篇
  1990年   32篇
  1989年   21篇
  1988年   39篇
  1987年   31篇
  1986年   24篇
  1985年   28篇
  1984年   24篇
  1983年   23篇
  1982年   26篇
  1981年   19篇
  1980年   13篇
  1979年   12篇
  1978年   8篇
  1976年   11篇
  1975年   9篇
  1969年   7篇
  1968年   6篇
  1966年   7篇
排序方式: 共有2073条查询结果,搜索用时 15 毫秒
111.
To extend life expectancy and ensure healthy aging, it is crucial to prevent and minimize age‐induced skeletal muscle atrophy, also known as sarcopenia. However, the disease's molecular mechanism remains unclear. The age‐related Wnt/β‐catenin signaling pathway has been recently shown to be activated by the (pro)renin receptor ((P)RR). We report here that (P)RR expression was increased in the atrophied skeletal muscles of aged mice and humans. Therefore, we developed a gain‐of‐function model of age‐related sarcopenia via transgenic expression of (P)RR under control of the CAG promoter. Consistent with our hypothesis, (P)RR‐Tg mice died early and exhibited muscle atrophy with histological features of sarcopenia. Moreover, Wnt/β‐catenin signaling was activated and the regenerative capacity of muscle progenitor cells after cardiotoxin injury was impaired due to cell fusion failure in (P)RR‐Tg mice. In vitro forced expression of (P)RR protein in C2C12 myoblast cells suppressed myotube formation by activating Wnt/β‐catenin signaling. Administration of Dickkopf‐related protein 1, an inhibitor of Wnt/β‐catenin signaling, and anti‐(P)RR neutralizing antibody, which inhibits binding of (P)RR to the Wnt receptor, significantly improved sarcopenia in (P)RR‐Tg mice. Furthermore, the use of anti‐(P)RR neutralizing antibodies significantly improved the regenerative ability of skeletal muscle in aged mice. Finally, we show that Yes‐associated protein (YAP) signaling, which is coordinately regulated by Wnt/β‐catenin, contributed to the development of (P)RR‐induced sarcopenia. The present study demonstrates the use of (P)RR‐Tg mice as a novel sarcopenia model, and shows that (P)RR‐Wnt‐YAP signaling plays a pivotal role in the pathogenesis of this disease.  相似文献   
112.
Monoclonal antibodies (mAbs) against human, mouse, rat, rabbit, dog, cat, and bovine podoplanin (PDPN), a lymphatic endothelial cell marker, have been established in our previous studies. However, mAbs against horse PDPN (horPDPN), which are useful for immunohistochemical analysis, remain to be developed. In the present study, mice were immunized with horPDPN-overexpressing Chinese hamster ovary (CHO)-K1 cells (CHO/horPDPN), and hybridomas producing mAbs against horPDPN were screened using flow cytometry. One of the mAbs, PMab-219 (IgG2a, kappa), specifically detected CHO/horPDPN cells via flow cytometry and recognized horPDPN protein using Western blotting. Furthermore, PMab-219 strongly stained CHO/horPDPN via immunohistochemistry. These findings suggest that PMab-219 is useful for investigating the function of horPDPN.  相似文献   
113.
Podoplanin (PDPN) is known as a lymphatic endothelial cell marker. Monoclonal antibodies (mAbs) against human, mouse, rat, rabbit, dog, cat, bovine, pig, and horse PDPN have been established in our previous studies. However, mAbs against alpaca PDPN (aPDPN), required for immunohistochemical analysis, remain to be developed. In the present study, we employed the Cell-Based Immunization and Screening (CBIS) method for producing anti-aPDPN mAbs. We immunized mice with aPDPN-overexpressing Chinese hamster ovary (CHO)-K1 cells (CHO/aPDPN), and hybridomas producing mAbs against aPDPN were screened using flow cytometry. One of the mAbs, PMab-225 (IgG2b, kappa), specifically detected CHO/aPDPN cells via flow cytometry and recognized the aPDPN protein on Western blotting. Further, PMab-225 strongly stained lung type I alveolar cells, colon lymphatic endothelial cells, and kidney podocytes via immunohistochemistry. These findings demonstrate that PMab-225 antibody is useful to investigate the function of aPDPN via different techniques.  相似文献   
114.
Tocopheryl succinate (Tsuc) is a succinic acid ester of the well-known antioxidant α-tocopherol (T). Tsuc exhibits various biological activities, including tumor growth suppression via activation of cell signaling and prevention of lipid accumulation in mouse adipocyte 3T3-L1 cells. The latter findings suggest that Tsuc may be a drug candidate for the treatment of obesity. However, Tsuc was found to induce apoptosis of normal cells (in addition to cancer cells), demonstrating the need to reduce the cytotoxicity of Tsuc without losing the suppression effect on lipid accumulation. Based on our previous findings, we focused on the ester structure of Tsuc for controlling cytotoxicity. Herein, we examined the cytotoxicity and lipid accumulation suppression effect of various T ester derivatives. We found that the terminal carboxylic group is necessary for suppression of lipid accumulation. We synthesized tocopheryl glutarate (Tglu) and tocopheryl adipate (Tadi) by elongation of carbon atoms 1 and 2 of the dicarboxylic moiety, respectively. Tglu and Tadi did not show any cytotoxicity, and both esters suppressed lipid accumulation, although their suppression activities were weaker than that of Tsuc. Tadi showed a more potent lipid accumulation inhibitory effect than Tglu. Although Tadi inhibited lipogenesis and promoted lipolysis, lipolysis was induced at lower concentrations than inhibition of lipogenesis, suggesting that Tadi mainly affects lipolysis. Taken together, we succeeded in the reduction of cytotoxicity, without loss of the suppression effect on lipid accumulation, by elongation of the dicarboxylic moiety of Tsuc. Tadi may be a promising candidate as an anti-obesity drug.  相似文献   
115.
In Mytilus mussels, paternal mitochondrial DNA (mtDNA) from sperm is known to be transmitted to offspring. This phenomenon is called doubly uniparental inheritance (DUI). Under DUI, sperm mtDNA (M type) is inherited only by males. Female mussels receive maternal mtDNA (F type). However, in our previous study, we showed female and unfertilized eggs have both F and M types. We hypothesized that the two M types both from sperm and unfertilized eggs were transmitted to offspring. To test the hypothesis, we examined the number of M type haplotypes in mature M. galloprovincialis. The M type in larvae was compared with those of the parents. Cross experiments were carried out to test the inheritance of M type. In six of 20 mature mussels, two M types were detected by sequence analysis and polymerase chain reaction-restriction fragment length polymorphism. In cross experiments of larval samples from five of 12 crosses, double peak wave was observed by single nucleotide polymorphisms analysis. In these larval samples, the higher peak wave was identical to the parental M type. Larvae received much more paternal M type than the maternal ones. We demonstrated that two M types from sperm and unfertilized eggs were transmitted to offspring in M. galloprovincialis.  相似文献   
116.
Monoclonal antibodies (mAbs) specific for the human macrophage galactose-type calcium-type lectin (MGL) were established. The recombinant extracellular domain of MGL was used to immunize a mouse, and 10 hybridoma clones were obtained. Binding of recombinant MGL to asialo-bovine submaxillary mucin was shown to be blocked by mAbs MLD-1, 4 and 6. Immunoprecipitation of MGL from lysates of COS-1 cells transfected with MGL cDNA (form 6A) was achieved with mAbs MLD-1, 4, 7, 8 and 16. Chimeric recombinant proteins between human MGL and mouse MGL1 were used to determine the location of the epitopes for these mAbs. mAbs MLD-8, 13, 15 and 16 interacted with the amino terminal side of the conserved WVDGTD sequence immediately upstream of QPD, whereas mAbs MLD-7, 12 and 17 interacted with the other side. mAbs MLD-1, 4, and 6 apparently required both sides of this boundary. mAbs MLD-15 and 16 were shown to recognize the protein products of alternatively spliced mRNA 6A/8A and 6C/8A, having deletions at the boundary of exons 7 and 8, in addition to full length and other spliced forms of MGL (6A, 6B and 6C), whereas the other mAbs bound only full length and forms 6A, 6B and 6C.  相似文献   
117.
1,2-alpha-L-fucosidase (AfcA), which hydrolyzes the glycosidic linkage of Fucalpha1-2Gal via an inverting mechanism, was recently isolated from Bifidobacterium bifidum and classified as the first member of the novel glycoside hydrolase family 95. To better understand the molecular mechanism of this enzyme, we determined the x-ray crystal structures of the AfcA catalytic (Fuc) domain in unliganded and complexed forms with deoxyfuconojirimycin (inhibitor), 2'-fucosyllactose (substrate), and L-fucose and lactose (products) at 1.12-2.10 A resolution. The AfcA Fuc domain is composed of four regions, an N-terminal beta region, a helical linker, an (alpha/alpha)6 helical barrel domain, and a C-terminal beta region, and this arrangement is similar to bacterial phosphorylases. In the complex structures, the ligands were buried in the central cavity of the helical barrel domain. Structural analyses in combination with mutational experiments revealed that the highly conserved Glu566 probably acts as a general acid catalyst. However, no carboxylic acid residue is found at the appropriate position for a general base catalyst. Instead, a water molecule stabilized by Asn423 in the substrate-bound complex is suitably located to perform a nucleophilic attack on the C1 atom of L-fucose moiety in 2'-fucosyllactose, and its location is nearly identical near the O1 atom of beta-L-fucose in the products-bound complex. Based on these data, we propose and discuss a novel catalytic reaction mechanism of AfcA.  相似文献   
118.
We cloned a new cysteine proteinase of wheat seed origin, which hydrolyzed the storage protein gliadin almost specifically, and was named gliadain. Gliadain mRNA was expressed 1 day after the start of seed imbibition, and showed a gradual increase thereafter. Gliadain expression was suppressed when uniconazol, a gibberellin synthesis inhibitor, was added to germinating seeds. Histochemical detection with anti-gliadain serum indicated that gliadain was present in the aleurone layer and also that its expression intensity increased in sites nearer the embryo. The enzymological characteristics of gliadain were investigated using recombinant glutathione S-transferase (GST)-progliadain fusion protein produced in Escherichia coli. The GST-progliadain almost specifically digested gliadin into low molecular mass peptides. These results indicate that gliadain is produced via gibberellin-mediated gene activation in aleurone cells and secreted into the endosperm to digest its storage proteins. Enzymologically, the GST-progliadain hydrolyzed benzyloxycarbonyl-Phe-Arg-7-amino-4-methylcoumarin (Z-Phe-Arg-NH(2)-Mec) at K(m) = 9.5 microm, which is equivalent to the K(m) value for hydrolysis of this substrate by cathepsin L. Hydrolysis was inhibited by two wheat cystatins, WC1 and WC4, with IC(50) values of 1.7 x 10(-8) and 5.0 x 10(-8) m, respectively. These values are comparable with those found for GST-progliadain inhibition by E-64 and egg-white cystatin, and are consistent with the possibility that, in germinating wheat seeds, gliadain is under the control of intrinsic cystatins.  相似文献   
119.
According to a report from the World Health Organization (WHO), the mortality and disease severity induced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are significantly higher in cancer patients than those of individuals with no known condition. Common and cancer-specific risk factors might be involved in the mortality and severity rates observed in the coronavirus disease 2019 (COVID-19). Similarly, various factors might contribute to the aggravation of COVID-19 in patients with cancer. However, the factors involved in the aggravation of COVID-19 in cancer patients have not been fully investigated so far. The formation of metastases in other organs is common in cancer patients. Therefore, the present study investigated the association between lung metastatic lesion formation and SARS-CoV-2 infectivity. In the pulmonary micrometastatic niche of patients with ovarian cancer, alveolar epithelial stem-like cells were found adjacent to ovarian cancer. Moreover, angiotensin-converting enzyme 2, a host-side receptor for SARS-CoV-2, was expressed in these alveolar epithelial stem-like cells. Furthermore, the spike glycoprotein receptor-binding domain (RBD) of SARS-CoV-2 was bound to alveolar epithelial stem-like cells. Altogether, these data suggested that patients with cancer and pulmonary micrometastases are more susceptible to SARS-CoV-2. The prevention of de novo niche formation in metastatic diseases might constitute a new strategy for the clinical treatment of COVID-19 for patients with cancer.  相似文献   
120.
The present study was undertaken to determine whether altered expression of the VDCC beta-subunits in pancreatic beta-cells could play a role in the changes in beta-cell sensitivity to glucose that occur with diabetes. Application of competitive RT-PCR procedure revealed that in normal Wistar rats, LETO and prediabetic OLETF rats, the beta(2)-subunit mRNA levels were 60-200-fold greater than the levels for the beta(3)-subunit. These findings suggest that the beta(2)-subunit as well as the beta-cell type VDCC1 alpha(1)-subunit may be the predominant form of the VDCC expressed in pancreatic beta-cells. The levels of mRNA encoding the beta-subunits and the beta-cell type alpha(1)-subunit as well as insulin were significantly reduced in diabetic rats. Perfusion experiments revealed that diabetic rats showed the higher basal insulin secretion and profoundly impaired insulin secretory responses to glucose compared with non-diabetic rats. Alternatively, impaired insulin secretory responses to glucose in high dose glucose-infused rats were recovered partly with the elevation of mRNA levels of the VDCC beta(2)- and beta(3)-subunits as well as the alpha(1)-subunit by the treatment with diazoxide. Thus, considering the possibility that the most striking effect of the VDCC alpha(1) beta-subunit coexpression in pancreatic beta-cells might occur on activation kinetics like the skeletal muscle, the impairment of further activation of the VDCCs to acute glucose challenge caused by the reduced expressions of the alpha(1) beta-subunits mRNAs in type 2 diabetic animals might be at least partly associated with the alterations in beta-cell sensitivity to glucose.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号