首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   652篇
  免费   41篇
  2023年   4篇
  2022年   11篇
  2021年   28篇
  2020年   18篇
  2019年   9篇
  2018年   18篇
  2017年   19篇
  2016年   17篇
  2015年   35篇
  2014年   42篇
  2013年   63篇
  2012年   63篇
  2011年   71篇
  2010年   36篇
  2009年   22篇
  2008年   38篇
  2007年   38篇
  2006年   30篇
  2005年   29篇
  2004年   31篇
  2003年   24篇
  2002年   21篇
  2001年   8篇
  2000年   3篇
  1999年   1篇
  1998年   5篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1993年   1篇
  1990年   2篇
  1985年   1篇
排序方式: 共有693条查询结果,搜索用时 265 毫秒
21.
The synthesis of polyunsaturated fatty acids, the most abundant fatty acids in plants, begins with a reaction catalyzed by fatty acid desaturase-2 (FAD2; EC 1.3.1.35), also called as microsomal Δ12 oleate desaturase. The gene (Bjfad2; GenBank accession No. EF639848) coding for this enzyme from Brassica juncea was previously isolated and characterized. However, functional identity of Bjfad2 was not established. Utilizing the known Bjfad2 cDNA sequence, the ORF of Bjfad2 gene was cloned into the pMAL C2X Escherichia coli expression vector and produced recombinant plasmid by insertion of isolated ORF downstream to the maltose-binding protein coding sequence. The pMALC2X-Bjfad2 vector was used to transform the TB1 strain of E. coli. Induced expression of pMAL-BJFAD2 fused product resulted in the synthesis of a polypeptide with an apparent molecular mass of 80 kDa, which was 8 kDa less than calculated mass as determined by SDS-PAGE, since the fused MalE-Bjfad2 gene contains eight additional codons located between the MalE and Bjfad2 gene. In vitro activity assay of oleate desaturase using the corresponding bacterial crude extracts confirmed that the polypeptide was the product of the Bjfad2 gene. The reaction products analysis of the fatty acid methyl esters by gas chromatography showed the presence of a new peak with a similar retention time to linoleic acid, which was absent in the control activity assay without electron donors. Thus, B. juncea gene has been functionally identified since it encodes the enzyme that catalyzed the desaturation of oleate to linoleate.  相似文献   
22.
Mycobacteriosis is a progressive disease of a wide range of wild and captive, marine and freshwater fish species. Conventional detection of fish Mycobacteria is based on histopathology, culture, and biochemical characteristics. The present study analyzed the occurrence of Mycobacteria in clinically ill ornamental fish of different species, from different places of India. In first group, 60 fish were examined for presence of granulomatous inflammation and acid-fast bacteria. Thirty-eight (63.34 %) fish were positive for granulomatous inflammations. Presences of acid-fast bacteria were detected in 27 (45 %) fish having granulomatous inflammation and in two (3.33 %) fish without granulomatous inflammation. In total, AFB were found in 29 (48.34 %) of the 60 fish examined. In second group, 20 fish having granulomatous inflammation, 12 (60 %) samples were positive using Ziehl–Neelsen (Z-N) staining and 11 (55 %) of them were culture positive. Eight (40 %) samples were Z-N negative but two (10 %) of them were culture positive. In total, 13 (65 %) of the 20 examined fish were culture positive. On the basis of biochemical tests and 16S rRNA sequencing, 13 isolates were identified: five as Mycobacterium fortuitum, five as Mycobacterium gordonae, and three as Mycobacterium chelonae. In comparison of two decontamination methods, 2 % HCl treatment was better than 4 % NaOH treatment. Mycobacteria recovery from decontaminated samples was significantly high on Lowenstein–Jensen medium compared to Middlebrook 7H11 agar and Stonebrink (SB) media. The disease is transmissible from fish to fish and also from fish to human, so the significance of Mycobacteria in ornamental fish should not be overlooked.  相似文献   
23.
Quinolone resistance‐determining region is known to be the druggability site of the target protein that undergoes frequent mutation and thus renders quinolone resistance. In the present study, ligands were tested for their inhibitory activity against DNA gyrase of Streptococcus pyogenes involved in DNA replication. In silico mutational analysis on modelled gyrase A revealed that GLU85 had the most possible interactions with all the ligands used for the study. The amino acid residue GLU85 had also been predicted with an essential role of maintaining the three‐dimensional structure of the protein. When introduced with a mutation (GLU 85 LYS) on this particular residue, it had readily denatured the whole α‐helix (from 80 to 90 amino acids). This was confirmed through the molecular dynamics simulation and revealed that this single mutation can cause many functional and structural changes. Furthermore, LYS85 mutation has altered the original secondary structure of the protein, which in turn led to the steric hindrance during the ligand–receptor interaction. The results based on the G‐score revealed that ligands have reduced interaction with the mutant protein. The semisynthetic fluoroquinolone 6d, which is an exception, forms a strong interaction with the mutant protein and was experimentally verified using the antimicrobial test. Hence, the present study unravels the fact that mutation at the drug binding site is the major cause for different level of resistance by the S. pyogenes when exposed against the varying concentrations of the fluoroquinolones. Furthermore, a comparative assessment of quinolone derivative with the older generation fluoroquinolones will be of great impact for S. pyogenes–related infections. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
24.
Disease aggressiveness remains a critical factor to the progression of prostate cancer. Transformation of epithelial cells to mesenchymal lineage, associated with the loss of E-cadherin, offers significant invasive potential and migration capability. Recently, Special AT-rich binding protein (SATB1) has been linked to tumor progression. SATB1 is a cell-type restricted nuclear protein, which functions as a tissue-specific organizer of DNA sequences during cellular differentiation. Our results demonstrate that SATB1 plays significant role in prostate tumor invasion and migration and its nuclear localization correlates with disease aggressiveness. Clinical specimen analysis showed that SATB1 was predominantly expressed in the nucleus of high-grade tumors compared to low-grade tumor and benign tissue. A progressive increase in the nuclear levels of SATB1 was observed in cancer tissues compared to benign specimens. Similarly, SATB1 protein levels were higher in a number of prostate cancer cells viz. HPV-CA-10, DU145, DUPro, PC-3, PC-3M, LNCaP and C4-2B, compared to non-tumorigenic PZ-HPV-7 cells. Nuclear expression of SATB1 was higher in biologically aggressive subclones of prostate cancer cells with their respective parental cell lines. Furthermore, ectopic SATB1 transfection conferred increased cell motility and invasiveness in immortalized human prostate epithelial PZ-HPV-7 cells which correlated with the loss of E-cadherin expression. Consequently, knockdown of SATB1 in highly aggressive human prostate cancer PC-3M cells inhibited invasiveness and tumor growth in vivo along with increase in E-cadherin protein expression. Our findings demonstrate that SATB1 has ability to promote prostate cancer aggressiveness through epithelial-mesenchymal transition.  相似文献   
25.
26.
Mutations in the nuclear gene POLG (encoding the catalytic subunit of DNA polymerase gamma) are an important cause of mitochondrial disease. The most common POLG mutation, A467T, appears to exhibit considerable phenotypic heterogeneity. The mechanism by which this single genetic defect results in such clinical diversity remains unclear. In this study we evaluate the clinical, neuropathological and mitochondrial genetic features of four unrelated patients with homozygous A467T mutations. One patient presented with the severe and lethal Alpers-Huttenlocher syndrome, which was confirmed on neuropathology, and was found to have a depletion of mitochondrial DNA (mtDNA). Of the remaining three patients, one presented with mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS), one with a phenotype in the Myoclonic Epilepsy, Myopathy and Sensory Ataxia (MEMSA) spectrum and one with Sensory Ataxic Neuropathy, Dysarthria and Ophthalmoplegia (SANDO). All three had secondary accumulation of multiple mtDNA deletions. Complete sequence analysis of muscle mtDNA using the MitoChip resequencing chip in all four cases demonstrated significant variation in mtDNA, including a pathogenic MT-ND5 mutation in one patient. These data highlight the variable and overlapping clinical and neuropathological phenotypes and downstream molecular defects caused by the A467T mutation, which may result from factors such as the mtDNA genetic background, nuclear genetic modifiers and environmental stressors.  相似文献   
27.
Bacteriophages are a class of viruses that specifically infect and replicate within a bacterium. They possess inherent affinity and specificity to the particular bacterial cells. This property of bacteriophages makes them an attractive biorecognition element in the field of biosensor development. In this work, we report the use of an immobilized bacteriophage for the development of a highly sensitive electrochemical sensor for Staphylococcus arlettae, bacteria from the pathogenic family of coagulase-negative staphylococci (CNS). The specific bacteriophages were covalently immobilized on the screen-printed graphene electrodes. Thus, the fabricated bacteriophage biosensor displayed quantitative response for the target bacteria (S. arlettae) for a broad detection range (2.0–2.0 × 106 cfu). A fast response time (2 min), low limit of detection (2 cfu), specificity, and stability over a prolonged period (3 months) are some of the important highlights of the proposed sensor. The practical utility of the developed sensor has been demonstrated by the analysis of S. arlettae in spiked water and apple juice samples.  相似文献   
28.
International Journal of Peptide Research and Therapeutics - The brain detects changes in energy depots and actuates metabolic and behavioral responses planned to hold energy balance. Hunger,...  相似文献   
29.
Uncialamycin analogs were evaluated as potential cytotoxic agents in an antibody-drug conjugate (ADC) approach to treating human cancer. These analogs were synthesized using Hauser annulations of substituted phthalides as a key step. A highly potent uncialamycin analog 3c with a valine-citrulline dipeptide linker was conjugated to an anti-mesothelin monoclonal antibody (mAb) through lysines to generate a meso-13 conjugate. This conjugate demonstrated subnanomolar potency (IC50?=?0.88?nM, H226 cell line) in in vitro cytotoxicity experiments with good immunological specificity to mesothelin-positive lung cancer cell lines. The potency and mechanism of action of this uncialamycin class of enediyne antitumor antibiotics make them attractive payloads in ADC-based cancer therapy.  相似文献   
30.
Skeletal muscle atrophy/wasting is associated with impaired protein metabolism in diverse physiological and pathophysiological conditions. Elevated levels of reactive oxygen species (ROS), disturbed redox status, and weakened antioxidant defense system are the major contributing factors toward atrophy. Regulation of protein metabolism by controlling ROS levels and its associated catabolic pathways may help in treating atrophy and related clinical conditions. Although cinnamaldehyde (CNA) enjoys the established status of antioxidant and its role in ROS management is reported, impact of CNA on skeletal muscle atrophy and related pathways is still unexplored. In the current study, the impact of CNA on C2C12 myotubes and the possible protection of cultured cells from H 2O 2-induced atrophy is examined. Myotubes were treated with H 2O 2 in the presence and absence of CNA and the changes in the antioxidative, proteolytic systems, and mitochondrial functions were scored. Morphological analysis showed significant protective effects of CNA on length, diameter, and nuclei fusion index of myotubes. The evaluation of biochemical markers of atrophy; creatine kinase, lactate dehydrogenase, succinate dehydrogenase along with the study of muscle-specific structural protein (i.e., myosin heavy chain-fast [MHCf] type) showed significant protection of proteins by CNA. CNA pretreatment not only checked the activation of proteolytic systems (ubiquitin-proteasome E3-ligases [MuRF1/Atrogin1]), autophagy [Beclin1/LC3B], cathepsin L, calpain, caspase), but also prevented any alteration in the activities of antioxidative defense enzymes (catalase, glutathione- S-transferase, glutathione-peroxidase, superoxide dismutase, glutathione reductase). The results suggest that CNA protects myotubes from H 2O 2-induced atrophy by inhibiting/resisting the amendments in proteolytic systems and maintains cellular redox-balance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号