首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   694篇
  免费   46篇
  740篇
  2023年   4篇
  2022年   15篇
  2021年   31篇
  2020年   19篇
  2019年   9篇
  2018年   21篇
  2017年   19篇
  2016年   20篇
  2015年   36篇
  2014年   46篇
  2013年   65篇
  2012年   67篇
  2011年   73篇
  2010年   38篇
  2009年   23篇
  2008年   40篇
  2007年   40篇
  2006年   31篇
  2005年   29篇
  2004年   31篇
  2003年   27篇
  2002年   21篇
  2001年   10篇
  2000年   3篇
  1999年   3篇
  1998年   6篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1993年   1篇
  1990年   3篇
  1985年   1篇
排序方式: 共有740条查询结果,搜索用时 0 毫秒
41.
The purified glucoamylase of the thermophilic mold Thermomucor indicae-seudaticaehad a molecular mass of 42 kDa with a pI of 8.2. It is a glycoprotein with 9-10.5% carbohydrate content, which acted optimally at 60 degrees C and pH 7.0, with a t(1/2) of 12 h at 60 degrees C and 7 h at 80 degrees C. Its experimental activation energy was 43 KJ mol(-1) with temperature quotient (Q(10)) of 1.35, while the values predicted by response surface methodology (RSM) were 43 KJ mol(-1) and 1.28, respectively. The enzyme hydrolyzed soluble starch at 50 degrees C (K(m) 0.50 mg mL(-1) and V(max) 109 micromol mg(-1) protein min(-1)) and at 60 degrees C (K(m) 0.40 and V(max) 143 micromol mg(-1) protein min(-1)). The experimental K(m) and V(max) values are in agreement with the predicted values at 50 degrees C (K(m) 0.45 mg mL(-1) and V(max) 111.11 micromol mg(-1) protein min(-1)) and at 60 degrees C (K(m) 0.36 mg mL(-1)and V(max) 142.85 micromol mg(-1) protein min(-1)). An Arrhenius plot indicated thermal activation up to 60 degrees C, and thereafter, inactivation. The enzyme was strongly stimulated by Co(2+), Fe(2+), Ag(2+), and Ca(2+), slightly stimulated by Cu(2+) and Mg(2+), and inhibited by Hg(2+), Zn(2+), Ni(2+), and Mn(2+). Among additives, dextran and trehalose slightly enhanced the activity. Glucoamylase activity was inhibited by EDTA, beta-mercaptoethanol, dithiothreitol, and n-bromosuccinimide, and n-ethylmaleimide inhibited its activity completely. This suggested the involvement of tryptophan and cysteine in catalytic activity and the critical role of disulfide linkages in maintaining the conformation of the enzyme. The enzyme hydrolyzed around 82% of soluble starch and 65% of raw starch (K(m) 2.4 mg mL(-1), V(max) 50 micromol mg(-1) protein min(-1)), and it was remarkably insensitive to glucose, suggesting its applicability in starch saccharification.  相似文献   
42.
Caspases, a group of cysteine-activated aspartate-directed proteases, play an integral role in the execution of programmed cell death or apoptosis. In the cellular caspase cascade, the processing of native proenzymes into activated forms of downstream, effector caspases is dependent on the activation of initiator caspases-8 and -9. We describe a staining procedure for immunofluorescence-based analysis of activation of caspase-8 and -9 during pharmacologically induced apoptosis in primary cultures of human umbilical vein-derived endothelial cells and in an established line of HeLa cells. Using cleavage site-directed antibodies, specific intracellular detection for cleaved fragments of caspase-8 and -9 was accomplished during apoptosis induced by staurosporine and etoposide. The population of cells displaying morphological signs of apoptosis, evidence for DNA strand breaks by TUNEL analysis, and positive staining for active forms of caspase-8 and caspase-9 increased with the duration of treatment, suggesting activation of initiator caspases in correlation with the onset and progression of apoptosis. The application of immunocytochemical staining procedures for quick and specific in situ detection may effectively aid the identification of participating upstream caspases and elucidation of complex apoptosis signaling mechanisms.  相似文献   
43.
The biosynthesis of nucleic acids and proteins was studied in rat uterus by following the incorporation of [3H]-thymidine, [3H]-uridineand[14C]-leucinein control and pregnant rats in the presence and absence of two anti-implantation drugs. One of the drugs, 78/224 caused a significant increase in incorporation whereas the other drug, Centchroman, caused an inhibition in incorporation of all the three precursors. The implications of these changes in the light of estrogenicity, agonist and antagonist actions of anti-estrogens have been analysed. The importance of homeostatic mechanisms involved in nucleic acids and proteins for the maintenance of constant internal milieu for blastocyst attachment has been discussed.  相似文献   
44.
45.
The NOD-like receptors have important roles in innate immunity as intracellular sensors of microbial components and cell injury. It has been proposed that these cytosolic proteins regulate the cysteine protease caspase-1 within a multiprotein complex known as the 'inflammasome'. Activation of caspase-1 leads to the cleavage and activation of pro-inflammatory cytokines such as interleukin-1beta (IL-1beta) and IL-18, as well as host-cell death. The analysis of mice that are deficient in various inflammasome components has revealed that the inflammasome is a dynamic entity that is assembled from different adaptors in a stimulus-dependent manner. Here we review recent work on the activation of the inflammasome in response to various bacterial pathogens and tissue damage.  相似文献   
46.
Rett syndrome (RTT) is an X-linked dominant neurodevelopmental disorder affecting almost exclusively girls. Although mutations in methyl-CpG-binding protein (MeCP2) are known to be associated with RTT, gene expression patterns are not significantly altered in MeCP2-deficient cells. A recent study1 identified MeCP2-mediated histone modification and formation of a higher-order chromatin loop structure specifically associated with silent chromatin at the Dlx5-Dlx6 locus in normal cells, and its absence thereof in RTT patients. This altered expression of Dlx5 through loss of silent chromatin loop formation provides a molecular mechanism underlying RTT and proposes a novel role for MeCP2 in chromatin organization and imprinting.  相似文献   
47.
Chemotherapy is an important therapeutic strategy for cancer treatment and remains the mainstay for the management of human malignancies; however, chemotherapy fails to eliminate all tumor cells because of intrinsic or acquired drug resistance, which is the most common cause of tumor recurrence. Recently, emerging evidences suggest that Notch signaling pathway is one of the most important signaling pathways in drug-resistant tumor cells. Moreover, down-regulation of Notch pathway could induce drug sensitivity, leading to increased inhibition of cancer cell growth, invasion, and metastasis. This article will provide a brief overview of the published evidences in support of the roles of Notch in drug resistance and will further summarize how targeting Notch by “natural agents” could become a novel and safer approach for the improvement of tumor treatment by overcoming drug resistance.  相似文献   
48.
49.
Lower concentrations of CuSO4 (25–75 M) in the MS medium supplemented with 0.1 mg l–1 IAA+5.0 mg l–1 Kn+500 mg l–1 CH+10 mg l–1 Cyst hyd enhanced the growth of regenerants of Dioscorea bulbifera L. CuSO4 (75 M) induced an appreciable diosgenin yield in the regenerants compared to those obtained on media without Cu. The presence of Cu thus seems to stimulate diosgenin production. The regenerants also differentiated bulbils on lower concentrations of Cu. At CuSO4 (100 M), however, cultures showed poor growth as well as a low diosgenin yield. Increased proline and protein contents were recorded in cultures grown on Cu-enriched media.  相似文献   
50.
Dysfunction of the apoptotic pathway in prostate cancer cells confers apoptosis resistance towards various therapies. A novel strategy to overcome resistance is to directly target the apoptotic pathway in cancer cells. Apigenin, an anticancer agent, selectively toxic to cancer cells induces cell cycle arrest and apoptosis through mechanisms which are not fully explored. In the present study we provide novel insight into the mechanisms of apoptosis induction by apigenin. Treatment of androgen-refractory human prostate cancer PC-3 and DU145 cells with apigenin resulted in dose-dependent suppression of XIAP, c-IAP1, c-IAP2 and survivin protein levels. Apigenin treatment resulted in significant decrease in cell viability and apoptosis induction with the increase of cytochrome C in time-dependent manner. These effects of apigenin were accompanied by decrease in Bcl-xL and Bcl-2 and increase in the active form of Bax protein. The apigenin-mediated increase in Bax was due to dissociation of Bax from Ku70 which is essential for apoptotic activity of Bax. Apigenin treatment resulted in the inhibition of class I histone deacetylases and HDAC1 protein expression, thereby increasing the acetylation of Ku70 and the dissociation of Bax resulting in apoptosis of cancer cells. Furthermore, apigenin significantly reduced HDAC1 occupancy at the XIAP promoter, suggesting that histone deacetylation might be critical for XIAP downregulation. These results suggest that apigenin targets inhibitor of apoptosis proteins and Ku70–Bax interaction in the induction of apoptosis in prostate cancer cells and in athymic nude mouse xenograft model endorsing its in vivo efficacy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号