全文获取类型
收费全文 | 1953篇 |
免费 | 102篇 |
国内免费 | 1篇 |
专业分类
2056篇 |
出版年
2024年 | 5篇 |
2023年 | 16篇 |
2022年 | 32篇 |
2021年 | 46篇 |
2020年 | 23篇 |
2019年 | 30篇 |
2018年 | 53篇 |
2017年 | 40篇 |
2016年 | 69篇 |
2015年 | 80篇 |
2014年 | 116篇 |
2013年 | 136篇 |
2012年 | 186篇 |
2011年 | 178篇 |
2010年 | 126篇 |
2009年 | 101篇 |
2008年 | 131篇 |
2007年 | 104篇 |
2006年 | 124篇 |
2005年 | 94篇 |
2004年 | 102篇 |
2003年 | 78篇 |
2002年 | 66篇 |
2001年 | 18篇 |
2000年 | 4篇 |
1999年 | 15篇 |
1998年 | 16篇 |
1997年 | 12篇 |
1996年 | 11篇 |
1995年 | 8篇 |
1994年 | 6篇 |
1993年 | 8篇 |
1992年 | 5篇 |
1991年 | 3篇 |
1990年 | 3篇 |
1989年 | 2篇 |
1988年 | 1篇 |
1987年 | 1篇 |
1985年 | 2篇 |
1984年 | 1篇 |
1981年 | 1篇 |
1980年 | 1篇 |
1977年 | 1篇 |
1970年 | 1篇 |
排序方式: 共有2056条查询结果,搜索用时 15 毫秒
61.
James L. Daniel Carol A. Dangelmaier Sripal Mada Lorena Buitrago Jianguo Jin Wallace Y. Langdon Alexander Y. Tsygankov Satya P. Kunapuli Archana Sanjay 《The Journal of biological chemistry》2010,285(23):17282-17291
Cbl-b, a member of the Cbl family of E3 ubiquitin ligases, plays an important role in the activation of lymphocytes. However, its function in platelets remains unknown. We show that Cbl-b is expressed in human platelets along with c-Cbl, but in contrast to c-Cbl, it is not tyrosine-phosphorylated upon glycoprotein VI (GPVI) stimulation. Cbl-b, unlike c-Cbl, is not required for Syk ubiquitylation downstream of GPVI activation. Phospholipase Cγ2 (PLCγ2) and Bruton''s tyrosine kinase (BTK) are constituently associated with Cbl-b. Cbl-b-deficient (Cbl-b−/−) platelets display an inhibition in the concentration-response curve for GPVI-specific agonist-induced aggregation, secretion, and Ca2+ mobilization. A parallel inhibition is found for activation of PLCγ2 and BTK. However, Syk activation is not affected by the absence of Cbl-b, indicating that Cbl-b acts downstream of Syk but upstream of BTK and PLCγ2. When Cbl-b−/− mice were tested in the ferric chloride thrombosis model, occlusion time was increased and clot stability was reduced compared with wild type controls. These data indicate that Cbl-b plays a positive modulatory role in GPVI-dependent platelet signaling, which translates to an important regulatory role in hemostasis and thrombosis in vivo. 相似文献
62.
AimsHigh-fat diet (HFD) is associated with adipose inflammation, which contributes to key components of metabolic abnormalities. The expanded adipose tissue mass associated with obesity is the result of hyperplasia and hypertrophy of adipocytes. In this study, we investigated the effects of long-term HFD on adipocyte progenitor cell (APC) population and adipose-specific gene profiles in both white and brown adipose, and the role of perivascular adipose in the alteration of vascular function in response to HFD.Main methodsMale C57BL/6 mice were fed a standard normal diet (ND) or HFD for about 8 months. Glucose metabolism was assessed by an intraperitoneal glucose tolerance test. APC population and adipose-related gene profile were evaluated, and vascular function was measured in the presence or absence of perivascular adipose. Adiponectin and AMPK activity were also investigated.Key findingsHFD induced insulin resistance and glucose intolerance, and resulted in a decrease in APC population in brown, but not in white adipose tissue, when compared with animals fed a ND, with differential alterations of white and brown adipocyte-specific gene expression in brown and white adipose. Additionally, HFD led to altered vascular function in arteries in the presence of perivascular adipose tissue, which is associated with increased superoxide production. Adiponectin and AMPK activity were significantly decreased in response to long-term HFD.SignificanceThese findings suggest that long-term high-fat intake differentially alters adipocyte progenitor population and adipose-related gene expression in adipose tissue, and adiponectin-AMPK signaling might be involved. In addition, HFD induces changes in perivascular adipose-mediated vascular function. 相似文献
63.
Arindam Bhattacharjee Sanjay Ghosh 《Biochemical and biophysical research communications》2009,388(3):612-112
Protein tyrosine nitration (PTN) is a selective post-translational modification often associated with pathophysiological conditions. Although yeast cells lack of mammalian nitric oxide synthase (NOS) orthologues, still it has been shown that they are capable of producing nitric oxide (NO). Our studies showed that NO or reactive nitrogen species (RNS) produced in flavohemoglobin mutant (Δyhb1) strain along with the wild type strain (Y190) of Saccharomyces cerevisiae can be visualized using specific probe 4,5-diaminofluorescein diacetate (DAF-2DA). Δyhb1 strain of S. cerevisiae showed bright fluorescence under confocal microscope that proves NO or RNS accumulation is more in absence of flavohemoglobin. We further investigated PTN profile of both cytosol and mitochondria of Y190 and Δyhb1 cells of S. cerevisiae using two-dimensional (2D) gel electrophoresis followed by western blot analysis. Surprisingly, we observed many immunopositive spots both in cytosol and in mitochondria from Y190 and Δyhb1 using monoclonal anti-3-nitrotyrosine antibody indicating a basal level of NO or nitrite or peroxynitrite is produced in yeast system. To identify proteins nitrated in vivo we analyzed mitochondrial proteins from Y190 strains of S. cerevisiae. Among the eight identified proteins, two target mitochondrial proteins are aconitase and isocitrate dehydrogenase that are involved directly in the citric acid cycle. This investigation is the first comprehensive study to identify mitochondrial proteins nitrated in vivo. 相似文献
64.
A new ionic liquid, N-ethyl pyridinium trifluoroacetate, was used with a commercial protease to resolve N-acetyl amino acid esters in place of traditional organic solvents. Products with enantiomeric excess (ee) between 86–97% were obtained. These results show that with low concentration of this new ionic liquid, the enzymatic resolution can be increased considerably depending upon the substrate being used. 相似文献
65.
The basal cut end of coppice shoot cuttings of Pongamia pinnata was treated for 24 h with 0 (water treated control) or 5.0 mmol/L of KMnO4, KCI, and KH2PO4 or 2.5 mmol/L of K2HPO4 and K2SO4. Inorganic salts of P, S, Cl and Mn significantly influenced IAA ionization and adventitious rhizogenesis. P and S salts had lower IAA ionization potential, but more pronounced effect on adventitious rhizogenesis than Cl and Mn salts. The linear regression analysis also established negative correlations between salt induced IAA ionization with various characteristics of adventitious rhizogenesis such as sprouting (r = -0.83, p < 0.05), rooting (r = -0.82, p < 0.05), root number (r = -0.95, p < 0.01), and root length (r = -0.80, p < 0.1). The implication of IAA ionization in adventitious rhizogenesis has been discussed and the possible role of inorganic salts therein suggested. 相似文献
66.
67.
Sarkar P Luchowski R Raut S Sabnis N Remaley A Lacko AG Thamake S Gryczynski Z Gryczynski I 《Biophysical chemistry》2010,153(1):61-69
The styryl group of dyes has been used in cellular studies for over 20 years because of their solvatochromic and/or electrochromic properties. Here we report characterization of solubility and solvatochromic properties of a near infra-red styryl dye, styryl 11 or LDS 798. We have extended our studies to small unilamellar vesicles and lipid based nanoparticles and found that solvatochromic properties of this dye used in tandem with fluorescence correlation spectroscopy can be used to efficiently determine the diffusion coefficient and hence the size of the submicron lipid based particles. This technique has the potential to provide essential information about liposomal and vesicular structures and their movement in vitro and in situ. 相似文献
68.
Nikhil M. Vad Prabodh K. Kandala Sanjay K. Srivastava Majid Y. Moridani 《Chemico-biological interactions》2010,183(3):462-471
The aim of this study was to identify a phenolic prodrug compound that is minimally metabolized by rat liver microsomes, but yet could form quinone reactive intermediates in melanoma cells as a result of its bioactivation by tyrosinase. In current work, we investigated 24 phenolic compounds for their metabolism by tyrosinase, rat liver microsomes and their toxicity towards murine B16-F0 and human SK-MEL-28 melanoma cells. A linear correlation was found between toxicities of phenolic analogs towards SK-MEL-28 and B16-F0 melanoma cells, suggesting similar mechanisms of toxicity in both cell lines. 4-HEB was identified as the lead compound. 4-HEB (IC50 48 h, 75 μM) showed selective toxicity towards five melanocytic melanoma cell lines SK-MEL-28, SK-MEL-5, MeWo, B16-F0 and B16-F10, which express functional tyrosinase, compared to four non-melanoma cells lines SW-620, Saos-2, PC3 and BJ cells and two amelanotic SK-MEL-24, C32 cells, which do not express functional tyrosinase. 4-HEB caused significant intracellular GSH depletion, ROS formation, and showed significantly less toxicity to tyrosinase specific shRNA transfected SK-MEL-28 cells. Our findings suggest that presence of a phenolic group in 4-HEB is critical for its selective toxicity towards melanoma cells. 相似文献
69.
Tyrosine phosphatase epsilon is a positive regulator of osteoclast function in vitro and in vivo 总被引:7,自引:0,他引:7 下载免费PDF全文
Chiusaroli R Knobler H Luxenburg C Sanjay A Granot-Attas S Tiran Z Miyazaki T Harmelin A Baron R Elson A 《Molecular biology of the cell》2004,15(1):234-244
Protein tyrosine phosphorylation is a major regulator of bone metabolism. Tyrosine phosphatases participate in regulating phosphorylation, but roles of specific phosphatases in bone metabolism are largely unknown. We demonstrate that young (<12 weeks) female mice lacking tyrosine phosphatase epsilon (PTPepsilon) exhibit increased trabecular bone mass due to cell-specific defects in osteoclast function. These defects are manifested in vivo as reduced association of osteoclasts with bone and as reduced serum concentration of C-terminal collagen telopeptides, specific products of osteoclast-mediated bone degradation. Osteoclast-like cells are generated readily from PTPepsilon-deficient bone-marrow precursors. However, cultures of these cells contain few mature, polarized cells and perform poorly in bone resorption assays in vitro. Podosomes, structures by which osteoclasts adhere to matrix, are disorganized and tend to form large clusters in these cells, suggesting that lack of PTPepsilon adversely affects podosomal arrangement in the final stages of osteoclast polarization. The gender and age specificities of the bone phenotype suggest that it is modulated by hormonal status, despite normal serum levels of estrogen and progesterone in affected mice. Stimulation of bone resorption by RANKL and, surprisingly, Src activity and Pyk2 phosphorylation are normal in PTPepsilon-deficient osteoclasts, indicating that loss of PTPepsilon does not cause widespread disruption of these signaling pathways. These results establish PTPepsilon as a phosphatase required for optimal structure, subcellular organization, and function of osteoclasts in vivo and in vitro. 相似文献
70.
Shamsul Mohd Zain Rosmawati Mohamed David N. Cooper Rozaimi Razali Sanjay Rampal Sanjiv Mahadeva Wah-Kheong Chan Arif Anwar Nurul Shielawati Mohamed Rosli Anis Shafina Mahfudz Phaik-Leng Cheah Roma Choudhury Basu Zahurin Mohamed 《PloS one》2014,9(4)
Between 10 and 25% of individuals with non-alcoholic fatty liver disease (NAFLD) develop hepatic fibrosis leading to cirrhosis and hepatocellular carcinoma (HCC). To investigate the molecular basis of disease progression, we performed a genome-wide analysis of copy number variation (CNV) in a total of 49 patients with NAFLD [10 simple steatosis and 39 non-alcoholic steatohepatitis (NASH)] and 49 matched controls using high-density comparative genomic hybridization (CGH) microarrays. A total of 11 CNVs were found to be unique to individuals with simple steatosis, whilst 22 were common between simple steatosis and NASH, and 224 were unique to NASH. We postulated that these CNVs could be involved in the pathogenesis of NAFLD progression. After stringent filtering, we identified four rare and/or novel CNVs that may influence the pathogenesis of NASH. Two of these CNVs, located at 13q12.11 and 12q13.2 respectively, harbour the exportin 4 (XPO4) and phosphodiesterase 1B (PDE1B) genes which are already known to be involved in the etiology of liver cirrhosis and HCC. Cross-comparison of the genes located at these four CNV loci with genes already known to be associated with NAFLD yielded a set of genes associated with shared biological processes including cell death, the key process involved in ‘second hit’ hepatic injury. To our knowledge, this pilot study is the first to provide CNV information of potential relevance to the NAFLD spectrum. These data could prove invaluable in predicting patients at risk of developing NAFLD and more importantly, those who will subsequently progress to NASH. 相似文献