首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2538篇
  免费   136篇
  国内免费   2篇
  2024年   4篇
  2023年   16篇
  2022年   30篇
  2021年   57篇
  2020年   30篇
  2019年   39篇
  2018年   65篇
  2017年   50篇
  2016年   80篇
  2015年   101篇
  2014年   142篇
  2013年   189篇
  2012年   252篇
  2011年   232篇
  2010年   152篇
  2009年   127篇
  2008年   160篇
  2007年   133篇
  2006年   145篇
  2005年   116篇
  2004年   113篇
  2003年   86篇
  2002年   85篇
  2001年   28篇
  2000年   12篇
  1999年   20篇
  1998年   16篇
  1997年   16篇
  1996年   14篇
  1995年   13篇
  1994年   11篇
  1993年   10篇
  1992年   7篇
  1991年   7篇
  1990年   5篇
  1989年   10篇
  1988年   9篇
  1987年   11篇
  1986年   7篇
  1985年   6篇
  1984年   5篇
  1981年   6篇
  1980年   5篇
  1979年   11篇
  1978年   3篇
  1977年   10篇
  1976年   5篇
  1975年   7篇
  1974年   3篇
  1970年   4篇
排序方式: 共有2676条查询结果,搜索用时 31 毫秒
151.
152.
Cyclophilins, which bind to immunosuppressant cyclosporin A (CsA), are ubiquitous proteins and constitute a multigene family in higher organisms. Several members of this family are reported to catalyze cis-trans isomerisation of the peptidyl-prolyl bond, which is a rate limiting step in protein folding. The physiological role of these proteins in plants, with few exceptions, is still a matter of speculation. Although Arabidopsis genome is predicted to contain 35 cyclophilin genes, biochemical characterization, imperative for understanding their cellular function(s), has been carried only for few of the members. The present study reports the biochemical characterization of an Arabidopsis cyclophilin, AtCyp19-3, which demonstrated that this protein is enzymatically active and possesses peptidyl-prolyl cis-trans isomerase (PPIase) activity that is specifically inhibited by CsA with an inhibition constant (Ki) of 18.75 nM. The PPIase activity of AtCyp19-3 was also sensitive to Cu2+, which covalently reacts with the sulfhydryl groups, implying redox regulation. Further, using calmodulin (CaM) gel overlay assays it was demonstrated that in vitro interaction of AtCyp19-3 with CaM is Ca2+-dependent, and CaM-binding domain is localized to 35–70 amino acid residues in the N-terminus. Bimolecular fluorescence complementation assays showed that AtCyp19-3 interacts with CaM in vivo also, thus, validating the in vitro observations. However, the PPIase activity of the Arabidopsis cyclophilin was not affected by CaM. The implications of these findings are discussed in the context of Ca2+ signaling and cyclophilin activity in Arabidopsis.  相似文献   
153.
Cost‐effective production of fuels and chemicals from lignocellulosic biomass often involves enzymatic saccharification, which has been the subject of intense research and development. Recently, a mechanistic model for the enzymatic saccharification of cellulose has been developed that accounts for distribution of cellulose chain lengths, the accessibility of insoluble cellulose to enzymes, and the distinct modes of action of the component cellulases [Griggs et al. (2012) Biotechnol. Bioeng., 109(3):665–675; Griggs et al. (2012) Biotechnol. Bioeng., 109(3):676–685]. However, determining appropriate values for the adsorption, inhibition, and rate parameters required further experimental investigation. In this work, we performed several sets of experiments to aid in parameter estimation and to quantitatively validate the model. Cellulosic materials differing in degrees of polymerization and crystallinity (α‐cellulose‐Iβ and highly crystalline cellulose‐Iβ) were digested by component enzymes (EGI/CBHI/ ) and by mixtures of these enzymes. Based on information from the literature and the results from these experiments, a single set of model parameters was determined, and the model simulation results using this set of parameters were compared with the experimental data of total glucan conversion, chain‐length distribution, and crystallinity. Model simulations show significant agreement with the experimentally derived glucan conversion and chain‐length distribution curves and provide interesting insights into multiple complex and interacting physico‐chemical phenomena involved in enzymatic hydrolysis, including enzyme synergism, substrate accessibility, cellulose chain length distribution and crystallinity, and inhibition of cellulases by soluble sugars. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1237–1248, 2015  相似文献   
154.
Recent work has indicated that platelets, which are anucleate blood cells, significantly contribute to inflammatory disorders. Importantly, platelets also likely contribute to various inflammatory secondary disorders that are increasingly associated with Human Immunodeficiency Virus Type-1 (HIV) infection including neurological impairments and cardiovascular complications. Indeed, HIV infection is often associated with increased levels of platelet activators. Additionally, cocaine, a drug commonly abused by HIV-infected individuals, leads to increased platelet activation in humans. Considering that orchestrated signaling mechanisms are essential for platelet activation, and that nuclear factor-kappa B (NF-κB) inhibitors can alter platelet function, the role of NF-κB signaling in platelet activation during HIV infection warrants further investigation. Here we tested the hypothesis that inhibitory kappa B kinase complex (IKK) activation would be central for platelet activation induced by HIV and cocaine. Whole blood from HIV-positive and HIV-negative individuals, with or without cocaine abuse was used to assess platelet activation via flow cytometry whereas IKK activation was analyzed by performing immunoblotting and in vitro kinase assays. We demonstrate that increased platelet activation in HIV patients, as measured by CD62P expression, is not altered with reported cocaine use. Furthermore, cocaine and HIV do not activate platelets in whole blood when treated ex vivo. Finally, HIV-induced platelet activation does not involve the NF-κB signaling intermediate, IKKβ. Platelet activation in HIV patients is not altered with cocaine abuse. These results support the notion that non-IKK targeting approaches will be better suited for the treatment of HIV-associated inflammatory disorders.  相似文献   
155.

Background

Evidence of an association between serum vitamin D and cardiovascular disease risk is inconsistent and comes predominantly from studies in high-income settings. We assessed the association between serum levels of 25-hydroxyvitamin D3 (25(OH)D) and cardiovascular disease risk factors in a population of young Indian adults.

Methods

Cross-sectional analyses of data from APCAPS (Andhra Pradesh Children and Parents Study); a prospective birth cohort study in rural south India. Participants were 1038 (40.3% females) adults aged 18-24 years. Main outcome measures were blood pressures, fasting serum lipids (cholesterols and triglycerides), fasting glucose, insulin, measures of arterial stiffness (aortic augmentation index and aortic pulse wave velocity (aPWV)), carotid intima-media thickness, body mass index (BMI) and body fat (dual X-ray absorptiometry).

Results

Vitamin D deficiency (≤20ng/ml) was observed in 41.1% of this lean (mean BMI: 19.5) and active (mean minutes of moderate or vigorous physical activity per day: 186) population. Vitamin D deficiency was associated with higher median body fat in both males (15.9% body fat in vitamin D deficient males vs. 14.6% in non-deficient males, p<0.05) and females (29.1% body fat in vitamin D deficient females vs. 27.8% in non-deficient females, p<0.05) but no associations were observed between vitamin D deficiency and mean BMI or median fat mass index (FMI). Except a weak inverse association with fasting insulin in males, there was no clear association between serum vitamin D levels and cardiovascular disease risk factors in fully adjusted models.

Conclusions

We did not find clear evidence for an association between serum vitamin D levels and cardiovascular disease risk factors. Our results, consistent with the limited evidence from randomised trials of vitamin D supplementation and Mendelian randomisation experiments, suggest that the postulated link between serum vitamin D and cardiovascular disease may be non-causal. Instead, it may be attributable to confounding by lifestyle factors such as obesity and physical inactivity which may provide more fruitful targets for cardiovascular disease prevention.  相似文献   
156.
Mice in which Cbl is unable to bind PI3K (YF mice) display increased bone volume due to enhanced bone formation and repressed bone resorption during normal bone homeostasis. We investigated the effects of disrupted Cbl-PI3K interaction on fracture healing to determine whether this interaction has an effect on bone repair. Mid-diaphyseal femoral fractures induced in wild type (WT) and YF mice were temporally evaluated via micro-computed tomography scans, biomechanical testing, histological and histomorphometric analyses. Imaging analyses revealed no change in soft callus formation, increased bony callus formation, and delayed callus remodeling in YF mice compared to WT mice. Histomorphometric analyses showed significantly increased osteoblast surface per bone surface and osteoclast numbers in the calluses of YF fractured mice, as well as increased incorporation of dynamic bone labels. Furthermore, using laser capture micro-dissection of the fracture callus we found that cells lacking Cbl-PI3K interaction have higher expression of Osterix, TRAP, and Cathepsin K. We also found increased expression of genes involved in propagating PI3K signaling in cells isolated from the YF fracture callus, suggesting that the lack of Cbl-PI3K interaction perhaps results in enhanced PI3K signaling, leading to increased bone formation, but delayed remodeling in the healing femora.  相似文献   
157.
Aberrant Nuclear Factor-κappaB (NF-κB) activation due to rapid IκBα turnover and high basal IκBα kinase (IKK) activity has been frequently observed in prostate cancer. Apigenin, a naturally occurring plant flavone, exhibits anti-proliferative, anti-inflammatory and anti-carcinogenic activities by inhibiting NF-κB pathway, through a mechanism not fully understood. We found that apigenin feeding in microgram doses (bioavailable in humans) inhibited prostate tumorigenesis in TRAMP mice by interfering with NF-κB signaling. Apigenin feeding to TRAMP mice (20 and 50 μg/mouse/day, 6 days/week for 20 weeks) exhibited significant decrease in tumor volumes of the prostate and completely abolished metastasis, which correlated with inhibition of NF-κB activation and binding to the DNA. Apigenin intake blocked phosphorylation and degradation of IκBα by inhibiting IKK activation, which in turn led to suppression of NF-κB activation. The expression of NF-κB-regulated gene products involved in proliferation (cyclin D1, and COX-2), anti-apoptosis (Bcl-2 and Bcl-xL), and angiogenesis (vascular endothelial growth factor) were also downregulated after apigenin feeding. These events correlated with the induction of apoptosis in tumor cells, as evident by increased cleaved caspase-3 labeling index in the dorsolateral prostate. Our results provide convincing evidence that apigenin inhibits IKK activation and restores the expression of IκBα, preventing it’s phosphorylation in a fashion similar to that elicited by IKK and proteasomal inhibitors through suppression of NF-κB signaling pathway.  相似文献   
158.
Interferon Regulatory Factors (IRFs) play fundamental roles in dendritic cell (DC) differentiation and function. In particular, IRFs are critical transducers of TLR signaling and dysregulation in this family of factors is associated with the development of autoimmune disorders such as Systemic Lupus Erythematosus (SLE). While several IRFs are expressed in DCs their relative contribution to the aberrant phenotypic and functional characteristics that DCs acquire in autoimmune disease has not been fully delineated. Mice deficient in both DEF6 and SWAP-70 (= Double-knock-out or DKO mice), two members of a unique family of molecules that restrain IRF4 function, spontaneously develop a lupus-like disease. Although autoimmunity in DKO mice is accompanied by dysregulated IRF4 activity in both T and B cells, SWAP-70 is also known to regulate multiple aspects of DC biology leading us to directly evaluate DC development and function in these mice. By monitoring Blimp1 expression and IL-10 competency in DKO mice we demonstrate that DCs in these mice exhibit dysregulated IL-10 production, which is accompanied by aberrant Blimp1 expression in the spleen but not in the peripheral lymph nodes. We furthermore show that DCs from these mice are hyper-responsive to multiple TLR ligands and that IRF4 plays a differential role in in these responses by being required for the TLR4-mediated but not the TLR9-mediated upregulation of IL-10 expression. Thus, DC dysfunction in lupus-prone mice relies on both IRF4-dependent and IRF4-independent pathways.  相似文献   
159.
Bacterial invasion plays a critical role in the establishment of Pseudomonas aeruginosa infection and is aided by two major virulence factors – surface appendages and secreted proteases. The second messenger cyclic diguanylate (c-di-GMP) is known to affect bacterial attachment to surfaces, biofilm formation and related virulence phenomena. Here we report that MorA, a global regulator with GGDEF and EAL domains that was previously reported to affect virulence factors, negatively regulates protease secretion via the type II secretion system (T2SS) in P. aeruginosa PAO1. Infection assays with mutant strains carrying gene deletion and domain mutants show that host cell invasion is dependent on the active domain function of MorA. Further investigations suggest that the MorA-mediated c-di-GMP signaling affects protease secretion largely at a post-translational level. We thus report c-di-GMP second messenger system as a novel regulator of T2SS function in P. aeruginosa. Given that T2SS is a central and constitutive pump, and the secreted proteases are involved in interactions with the microbial surroundings, our data broadens the significance of c-di-GMP signaling in P. aeruginosa pathogenesis and ecological fitness.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号