首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   458篇
  免费   20篇
  478篇
  2023年   3篇
  2022年   9篇
  2021年   10篇
  2020年   11篇
  2019年   7篇
  2018年   16篇
  2017年   8篇
  2016年   14篇
  2015年   20篇
  2014年   19篇
  2013年   26篇
  2012年   41篇
  2011年   54篇
  2010年   35篇
  2009年   23篇
  2008年   28篇
  2007年   32篇
  2006年   25篇
  2005年   25篇
  2004年   21篇
  2003年   27篇
  2002年   16篇
  2001年   1篇
  1999年   2篇
  1997年   2篇
  1996年   2篇
  1989年   1篇
排序方式: 共有478条查询结果,搜索用时 12 毫秒
61.
The successful use of recombinant activated factor VII (rFVIIa), in treating massive, life-threatening haemoptysis in a 55-year-old male patient with chronic necrotising aspergillosis, is reported. Patient diagnosed with chronic necrotising aspergillosis three months ago was admitted to our department with massive haemoptysis. Patient was treated as outpatient with itraconazole. One day post-admission, two doses of rFVIIa (30 microg x kg(-1)) were administered and the haemoptysis was successfully resolved. Two further doses of rFVIIa (30 microg x kg(-1) were given the following day, and after that there were no more recurrences of pulmonary haemorrhage. No thromboembolic or other adverse events were observed following rFVIIa therapy. Our findings suggest that use of rFVIIa may represent a safe and effective treatment choice for patients with haemoptysis due to aspergillosis.  相似文献   
62.
Number of researches dealing with the influence of the ABO blood group antigens on the development of the oral cancer have hypothesized that people who do not secrete these substances in the saliva are more prone to suffer from this disease. The objective of this research is to examine this hypothesis. In total 114 subjects were examined, half of which suffered from oral cancer, while the other half was the healthy control group. All examinees were subjected to clinical examinations and the experimental group to pathohistological examination. An analysis of the secretor status was carried out using the Wiener agglutination test. The experimental group consisted of 78.95% of secretors, while the control group consisted of 82.46% of secretors. This difference is not statistically significant. The starting hypothesis that non-secretors are more prone to the development of oral cancer was not confirmed.  相似文献   
63.
As human choriocarcinoma cells display many of the biochemical and morphological characteristics reported for in utero invasive trophoblast cells we have studied cholesterol supply from high density lipoproteins (HDL) to these cells. Binding properties of 125I-labeled HDL subclass 3 (HDL3) at 4 degrees C were similar for BeWo, JAr, and Jeg3 choriocarcinoma cell lines while degradation rates at 37 degrees C were highest for BeWo. Calculating the selective cholesteryl ester (CE)-uptake as the difference between specific cell association of [3H]CE-labeled HDL3 and holoparticle association of 125I-labeled HDL3 revealed that in BeWo cells, the selective CE-uptake was slightly lower than holoparticle association. However, the pronounced capacity for specific cell association of [3H]CE-HDL3 and selective [3H]CE-uptake in excess of HDL3-holoparticle association, and cAMP-mediated enhanced cell association of [3H]CE-HDL3 in JAr and Jeg3 suggested the scavenger receptor class B, type I (SR-BI) to be responsible for this pathway. Abundant expression of SR-BI (but not SR-BII, a splice variant of SR-BI) could be observed in JAr and Jeg3 but not in BeWo cells using RT-PCR, Northern and Western blot analysis, and immunocytochemical technique. Adenovirus-mediated overexpression of SR-BI in all three choriocarcinoma cell lines resulted in an enhanced capacity for cell association of [3H]CE-HDL3 (20-fold in BeWo; fivefold in JAr and Jeg3). The fact that exogenous HDL3 remarkably increases proliferation in JAr and Jeg3 supports the notion that selective CE-uptake and subsequent intracellular generation of cholesterol is coupled to cellular growth. From our findings we propose that JAr and Jeg3 cells serve as a suitable in vitro model to study selective CE-supply to human placental cells.  相似文献   
64.
65.
Differentiation of cancer cells entails the reversion of phenotype from malignant to the original. The conversion to cell type characteristic for another tissue is named transdifferentiation. Differentiation/transdifferentiation of malignant cells in high grade tumor mass could serve as a nonaggressive approach that potentially limits tumor progression and augments chemosensitivity. While this therapeutic strategy is already being used for treatment of hematological cancers, its feasibility for solid malignancies is still debated. We will presently discuss the natural compounds that show these properties, with focus on anthraquinones from Aloe vera, Senna, Rheum sp. and hop derived prenylflavonoids.  相似文献   
66.
Kv1.3 is a voltage gated potassium channel that has been implicated in pathophysiology of multiple sclerosis (MS). In the present study we investigated temporal and cellular expression pattern of this channel in the lumbar part of spinal cords of animals with experimental autoimmune encephalomyelitis (EAE), animal model of MS. EAE was actively induced in female Dark Agouti rats. Expression of Kv1.3 was analyzed at different time points of disease progression, at the onset, peak and end of EAE. We here show that Kv1.3 increased by several folds at the peak of EAE at both gene and protein level. Double immunofluorescence analyses demonstrated localization of Kv1.3 on activated microglia, macrophages, and reactive astrocytes around inflammatory lesions. In vitro experiments showed that pharmacological block of Kv1.3 in activated astrocytes suppresses the expression of proinflammatory mediators, suggesting a role of this channel in inflammation. Our results support the hypothesis that Kv1.3 may be a therapeutic target of interest for MS and add astrocytes to the list of cells whose activation would be suppressed by inhibiting Kv1.3 in inflammatory conditions.  相似文献   
67.
Sponges (phylum Porifera) live in a symbiotic relationship with microorganisms, primarily bacteria. Until now, molecular proof for the capacity of sponges to recognize fungi in the surrounding aqueous milieu has not been available. Here we demonstrate, for the demosponge Suberites domuncula (Porifera, Demospongiae, Hadromerida), a cell surface receptor that recognizes (1-->3)-beta-D-glucans, e.g. curdlan or laminarin. This receptor, the (1-->3)-beta-D-glucan-binding protein, was identified and its cDNA analysed. The gene coding for the 45 kDa protein was found to be upregulated in tissue after incubation with carbohydrate. Simultaneously with the increased expression of this gene, two further genes showed an elevated steady state level of expression; one codes for a fibrinogen-like protein and the other for the epidermal growth factor precursor. Expression of the (1-->3)-beta-D-glucan-binding protein and the fibrinogen-like protein occurred in cells on the sponge surface, in the pinacoderm. By Western blotting, the product of the fibrinogen-like protein gene was identified, the recombinant protein isolated, and antibodies raised to this protein. Their application revealed that a 5 kDa factor is produced, which is apparently processed from the 77 kDa epidermal growth factor precursor. Finally, we provided evidence that a tyrosine kinase pathway is initiated in response to exposure to D-glucan; its phosphorylation activity could be blocked by aeroplysinin. In turn, the increased expression of the downstream genes was suppressed. We conclude that sponges possess a molecular mechanism for recognizing fungi via the d-glucan carbohydrates on their surfaces.  相似文献   
68.
COVID-19 disease has been a problem in today’s society, which has worldwide effects on different areas, especially on the economy; also, from a health perspective, the disease affects the daily life quality. Physical activity is one major positive factor with regard to enhancing life quality, as it can improve the whole psychological, social, and physical health conditions. Current measures such as social distancing are focused on preventing the viral spread. However, the consequences on other areas are yet to be investigated. Elderly, people with chronic diseases, obese, and others benefit largely from exercise from the perspective of improved health, and preventive measures can drastically improve daily living. In this article, we elaborate the effects of exercise on the immune system and the possible strategies that can be implemented toward greater preventive potential.  相似文献   
69.
70.
Selective substrate uptake controls initiation of macromolecular secretion by type IV secretion systems in gram-negative bacteria. Type IV coupling proteins (T4CPs) are essential, but the molecular mechanisms governing substrate entry to the translocation pathway remain obscure. We report a biochemical approach to reconstitute a regulatory interface between the plasmid R1 T4CP and the nucleoprotein relaxosome dedicated to the initiation stage of plasmid DNA processing and substrate presentation. The predicted cytosolic domain of T4CP TraD was purified in a predominantly monomeric form, and potential regulatory effects of this protein on catalytic activities exhibited by the relaxosome during transfer initiation were analyzed in vitro. TraDΔN130 stimulated the TraI DNA transesterase activity apparently via interactions on both the protein and the DNA levels. TraM, a protein interaction partner of TraD, also increased DNA transesterase activity in vitro. The mechanism may involve altered DNA conformation as TraM induced underwinding of oriT plasmid DNA in vivo (ΔLk = −4). Permanganate mapping of the positions of duplex melting due to relaxosome assembly with TraDΔN130 on supercoiled DNA in vitro confirmed localized unwinding at nic but ruled out formation of an open complex compatible with initiation of the TraI helicase activity. These data link relaxosome regulation to the T4CP and support the model that a committed step in the initiation of DNA export requires activation of TraI helicase loading or catalysis.Type IV secretion systems (T4SS) in gram-negative bacteria mediate translocation of macromolecules out of the bacterial cell (14). The transmission of effector proteins and DNA into plant cells or other bacteria via cell-cell contact is one example of their function, and conjugation systems as well as the transferred DNA (T-DNA) delivery system of the phytopathogen Agrobacterium tumefaciens are prototypical of the T4SS family. Macromolecular translocation is achieved by a membrane-spanning protein machinery comprised of 12 gene products, VirB1 to VirB11 and an associated factor known as the coupling protein (VirD4) (66). The T4SS-associated coupling protein (T4CP) performs a crucial function in recognition of appropriate secretion substrates and governing entry of those molecules to the translocation pathway (7, 8, 10, 30, 41). In conjugation systems substrate recognition is applied to the relaxosome, a nucleoprotein complex of DNA transfer initiator proteins assembled specifically at the plasmid origin of transfer (oriT). In current models, initiation of the reactions that provide the single strand of plasmid (T-strand) DNA for secretion to recipient bacteria is expected to resemble the initiation of chromosomal replication (for reviews, see references 18, 54, and 81). Controlled opening of the DNA duplex is required to permit entry of the DNA processing machinery. The task of remodeling the conjugative oriT is generally ascribed to two or three relaxosome auxiliary factors, of host and plasmid origin, which occupy specific DNA binding sites at this locus. Intrinsic to the relaxosome is also a site- and strand-specific DNA transesterase activity that breaks the phosphodiester backbone at nic (5). Upon cleavage, the transesterase enzyme (also called relaxase) forms a reversible phosphotyrosyl linkage to the 5′ end of the DNA. Duplex unwinding initiating from this site produces the single-stranded T strand to be exported. A wealth of information is available supporting the importance of DNA sequence recognition and binding by relaxosome components at oriT to the transesterase reaction in vitro and for effective conjugative transfer (for reviews, see references 18, 54, and 81). On the other hand, the mechanisms controlling release of the 3′-OH generated at nic and the subsequent DNA unwinding stage remain obscure.Equally little is known about the process of nucleoprotein uptake by the transport channel. DNA-independent translocation of the relaxases TrwC (R388), MobA (RSF1010), and VirD2 (Ti plasmid) has been demonstrated; thus, current models propose that the relaxase component of the protein-DNA adduct is the substrate actively secreted by the transport system after interaction with the T4CP (42, 66). Cotransport of the covalently linked single-stranded T strand occurs concurrently (42). The mechanisms underlying relaxosome recognition by T4CPs are not understood. Direct interactions have been observed biochemically between the RP4 TraG protein and relaxase proteins of the cognate plasmid (65) and heterologous relaxosomes that it mobilizes (73, 76). TrwB of R388 interacts in vitro with relaxase TrwC and an auxiliary component, TrwA (44). TraD proteins of plasmid R1 and F are known to interact with the auxiliary relaxosome protein TraM (20) via a cluster of C-terminal amino acids (3, 62). Extensive mutagenic analyses (45) plus recent three-dimensional structural data for a complex of the TraM tetramerization domain and the C-terminal tail of TraD (46) have provided more detailed models for the intermolecular contacts involved in recognition.Application of the Cre recombinase assay for translocation of conjugative relaxases as well as effector proteins to eukaryotic cells is currently the most promising approach to elucidate protein motifs recognized by T4CPs (56, 68, 78, 79). Despite that progress, the nature of the interactions between a T4CP and its target protein that initiate secretion and the mechanisms controlling this step remain obscure. In contrast to systems dedicated specifically to effector protein translocation, conjugation systems mobilize nucleoprotein complexes that additionally exhibit catalytic activities, which can be readily monitored. These models are therefore particularly well suited to investigate aspects of regulation occurring at the physical interface of a T4CP and its secretion substrate. For this purpose the MOBF family of DNA-mobilizing systems is additionally advantageous, since DNA processing within this family features the fusion of a dedicated conjugative helicase to the DNA transesterase enzyme within a single bifunctional protein. The TraI protein of F-like plasmids, originally described as Escherichia coli DNA helicase I (1, 2, 23), and the related TrwC protein of plasmid R388 (25) are well characterized (reviewed in reference 18). Early work by Llosa et al. revealed a complex domain arrangement for TrwC (43). Similar analyses with TraI identified nonoverlapping transesterase and helicase domains (6, 77), while the remaining intermediate and C-terminal regions of the protein additionally provide functions essential to effective conjugative transfer (49, 71). The ability to physically separate the catalytic domains of TraI and TrwC has facilitated a detailed biochemical characterization of their DNA transesterase, ATPase, and DNA-unwinding reactions. Nonetheless, failure of the physically disjointed polypeptides to complement efficient conjugative transfer when coexpressed indicates a role(s) for these proteins in the strand transfer process that goes beyond the need for their dual catalytic activities (43, 50). The assignment of additional functional properties to regions within TraI is a focus of current investigation (16, 29, 49).In all systems studied thus far, conditions used to reconstitute relaxosomes on a supercoiled oriT plasmid have not supported the initiation steps necessary to enable duplex unwinding by a conjugative helicase. The question remains open whether additional protein components are required and/or whether the pathway of initiation is subject to specific repression. In the present study, we applied the IncFII plasmid R1 paradigm to investigate the potential for interaction between purified components of the relaxosome and its cognate T4CP, TraD, to exert regulatory effects on relaxosome activities in vitro. In this and in the accompanying report (72), we present evidence for wide-ranging stimulatory effects of the cytoplasmic domain of TraD protein and its interaction partner TraM on multiple aspects of relaxosome function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号