首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1334篇
  免费   106篇
  2023年   6篇
  2022年   27篇
  2021年   40篇
  2020年   18篇
  2019年   27篇
  2018年   23篇
  2017年   22篇
  2016年   43篇
  2015年   60篇
  2014年   83篇
  2013年   87篇
  2012年   88篇
  2011年   108篇
  2010年   55篇
  2009年   45篇
  2008年   86篇
  2007年   58篇
  2006年   41篇
  2005年   41篇
  2004年   45篇
  2003年   37篇
  2002年   29篇
  2001年   28篇
  2000年   24篇
  1999年   19篇
  1996年   10篇
  1995年   8篇
  1994年   12篇
  1993年   8篇
  1992年   17篇
  1991年   16篇
  1990年   22篇
  1989年   19篇
  1988年   13篇
  1987年   14篇
  1986年   12篇
  1985年   17篇
  1984年   11篇
  1983年   7篇
  1982年   7篇
  1979年   10篇
  1978年   9篇
  1977年   5篇
  1976年   9篇
  1975年   6篇
  1973年   11篇
  1971年   6篇
  1970年   6篇
  1969年   8篇
  1965年   5篇
排序方式: 共有1440条查询结果,搜索用时 15 毫秒
31.
32.
The number of colonies formed by unirradiated Clostridium botulinum 62A spores was independent of temperature, in the range from 20 to 45 degrees C (in 5 degrees C increments); no colonies developed at 50 degrees C. Spores irradiated at 1.2 or 1.4 Mrads produced more macrocolonies at 40 degrees C than at higher or lower temperatures. Apparently, radiation-injured spores were capable of repair of 40 degrees C than at the other temperatures studied. More than 99% of the radiation (1.2 Mrads) survivors were injured and were unable to form macrocolonies in the presence of 5% NaCl. The germinated radiation-injured spores were also sensitive to dilution, resulting in the loss of viability of 77 to 79% of the radiation survivors. At 30 and 40 degrees C, the irradiated spores did not differ significantly in the extent of germination (greater than 99% at both 30 and 40 degrees C), emergence (64% at 30 degrees C and 67% at 40 degrees C), and the maximum number of emerged cells that started to elongate (69% at 30 degrees C and 79% at 40 degrees C). However, elongation was remarkably more extensive at 40 degrees C than at 30 degrees C. Many elongated cells lysed within 48 h at 30 degrees C, indicating an impaired repair mechanism. If the radiation-injured spores were incubated at 40 degrees C in the recovery (repair) medium for 8 to 10 h, they germinated, emerged, and elongated extensively and were capable of repair. If, after 8 to 10 h at 40 degrees C, these cultures were shifted to 30 degrees C, the recovery at 30 increased by more than eightfold, resulting in similar colony counts at 30 and 40 degrees C. Thus, repair appeared to be associated with outgrowth. Repair did not occur in the presence of chloramphenicol at 40 degrees C, whereas penicillin had no effect, suggesting that the repair involved protein synthesis but did not require multiplication.  相似文献   
33.
Butler MG  Chakraborty SA  Lampe DJ 《Genetica》2006,127(1-3):351-366
Mariner family transposons are perhaps the most widespread transposable elements of eukaryotes. While we are beginning to understand the precise mechanism of transposition of these elements, the structure of their transposases are still poorly understood. We undertook an extensive mutagenesis of the N-terminal third of the transposase of the Himar1 mariner transposon to begin the process of determining the structure and evolution of mariner transposases. N and C-terminal deletion analyses localized the DNA binding domain of Himar1 transposase to the first 115 amino acids. Alanine scanning of 23 selected sites within this region uncovered mutations that not only affected DNA binding but DNA cleavage as well. The behavior of other mutations strongly suggested that the N-terminus is also involved in multimerization of the transposase on a single inverted terminal repeat and in paired ends complex formation which brings together the two ends of the transposon. Finally, two hyperactive mutations at conserved sites suggest that mariner transposases are under a pattern of stabilizing selection in nature with regard to how efficiently they mediate transposition, resulting in a population of “average” transposons.  相似文献   
34.
Leptin, the product of the Obese (Lep) gene, orchestrates behavioral and metabolic responses to nutrient intake. Here, we demonstrate tissue-specific autoregulation of Lep. Moderate increases in circulating leptin considerably decreased Lep expression in adipose tissue and induced lep expression in skeletal muscle, a tissue that normally does not express this gene. Changes in nutrient availability resulted in rapid alterations in Lep autoregulation. These findings demonstrate negative feedback regulation of Lep in fat, and indicate that leptin secretion can function as a vehicle of 'cross-talk' between adipose tissue and skeletal muscle, leading to tissue-specific modulation of the 'leptin signal'.  相似文献   
35.
DNA motifs at several informative loci in more than 500 strains of Helicobacter pylori from five continents were studied by PCR and sequencing to gain insights into the evolution of this gastric pathogen. Five types of deletion, insertion, and substitution motifs were found at the right end of the H. pylori cag pathogenicity island. Of the three most common motifs, type I predominated in Spaniards, native Peruvians, and Guatemalan Ladinos (mixed Amerindian-European ancestry) and also in native Africans and U.S. residents; type II predominated among Japanese and Chinese; and type III predominated in Indians from Calcutta. Sequences in the cagA gene and in vacAm1 type alleles of the vacuolating cytotoxin gene (vacA) of strains from native Peruvians were also more like those from Spaniards than those from Asians. These indications of relatedness of Latin American and Spanish strains, despite the closer genetic relatedness of Amerindian and Asian people themselves, lead us to suggest that H. pylori may have been brought to the New World by European conquerors and colonists about 500 years ago. This thinking, in turn, suggests that H. pylori infection might have become widespread in people quite recently in human evolution.  相似文献   
36.
Dual emission carbon dots have a high potential for use as fluorescence‐based sensors with higher selectivity and sensitivity. This study demonstrated the possibility of conversion of a biological molecular system with a single emission peak to a double emission carbon dots system. This report is the first to describe the synthesis of dual emission carbon dots by tuning the electronic environment of a conjugated system. Here we prepared carbon dots from a natural extract, from which carotenoids were used as a new source for carbon dots. Formation of the carbon dots was confirmed by images obtained under a transmission electron microscope as well as from a dynamic light scattering study. The prepared carbon dots system was characterized and its optical property was monitored. The study showed that, after irradiation with microwaves, the fluorescence intensity of the whole system changed, without any change in the original peak position of the carotenoid but with the appearance of an additional peak. A Fourier transform infrared study confirmed breaking of the conjugated system. When using ethylene glycol as a surface passivating agent added to these carotenoid carbon dots, the dual emission spectra became more distinct.  相似文献   
37.
Stem cells holding great promises in regenerative medicine have the potential to be differentiated to a specific cell type through genetic manipulation. However, conventional ways of gene transfer to such progenitor cells suffer from a number of disadvantages particularly involving safety and efficacy issues. Here, we report on the development of a bio-functionalized inorganic nano-carrier of DNA by embedding fibronectin and E-cadherin chimera on the carrier, leading to its high affinity interactions with embryonic stem cell surface and accelerated trans-gene delivery for subsequent expression. While only apatite nano-particles were very inefficient in transfecting embryonic stem cells, fibronectin-anchored particles and to a more significant extent, fibronectin and E-cadherin-Fc-associated particles dramatically enhanced trans-gene delivery with a value notably higher than that of commercially available lipofection system. The involvement of both cell surface integrin and E-cadherin in mediating intracellular localization of the hybrid carrier was verified by blocking integrin binding site with excess free fibronectin and up-regulating both integrin and E-cadherin through PKC activation. Thus, the new establishment of a bio-functional hybrid gene-carrier would promote and facilitate development of stem cell-based therapy in regenerative medicine.  相似文献   
38.
39.
A unique event in bacterial epidemiology was the emergence of the El Tor biotype of Vibrio cholerae O1 and the subsequent rapid displacement of the existing classical biotype as the predominant cause of epidemic cholera. We demonstrate that when the El Tor and classical biotypes were cocultured in standard laboratory medium a precipitous decline in colony forming units (CFU) of the classical biotype occurred in a contact dependent manner. Several lines of evidence including DNA release, microscopy and flow cytometric analysis indicated that the drastic reduction in CFU of the classical biotype in cocultures was not accompanied by lysis, although when the classical biotype was grown individually in monocultures, lysis of the cells occurred concomitant with decrease in CFU starting from late stationary phase. Furthermore, uptake of a membrane potential sensitive dye and protection of genomic DNA from extracellular DNase strongly suggested that the classical biotype cells in cocultures retained viability in spite of loss of culturability. These results suggest that coculturing the classical biotype with the El Tor biotype protects the former from lysis allowing the cells to remain viable in spite of the loss of culturability. The stationary phase sigma factor RpoS may have a role in the loss of culturability of the classical biotype in cocultures. Although competitive exclusion of closely related strains has been reported for several bacterial species, conversion of the target bacterial population to the viable non-culturable state has not been demonstrated previously and may have important implications in the evolution of bacterial strains.  相似文献   
40.
In humans, the L-cysteine desulfurase NFS1 plays a crucial role in the mitochondrial iron-sulfur cluster biosynthesis and in the thiomodification of mitochondrial and cytosolic tRNAs. We have previously demonstrated that purified NFS1 is able to transfer sulfur to the C-terminal domain of MOCS3, a cytosolic protein involved in molybdenum cofactor biosynthesis and tRNA thiolation. However, no direct evidence existed so far for the interaction of NFS1 and MOCS3 in the cytosol of human cells. Here, we present direct data to show the interaction of NFS1 and MOCS3 in the cytosol of human cells using Förster resonance energy transfer and a split-EGFP system. The colocalization of NFS1 and MOCS3 in the cytosol was confirmed by immunodetection of fractionated cells and localization studies using confocal fluorescence microscopy. Purified NFS1 was used to reconstitute the lacking molybdoenzyme activity of the Neurospora crassa nit-1 mutant, giving additional evidence that NFS1 is the sulfur donor for Moco biosynthesis in eukaryotes in general.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号