首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56250篇
  免费   4706篇
  国内免费   49篇
  61005篇
  2023年   200篇
  2022年   584篇
  2021年   1003篇
  2020年   556篇
  2019年   741篇
  2018年   1133篇
  2017年   889篇
  2016年   1566篇
  2015年   2586篇
  2014年   2876篇
  2013年   3369篇
  2012年   4342篇
  2011年   4153篇
  2010年   2637篇
  2009年   2319篇
  2008年   3337篇
  2007年   3100篇
  2006年   2834篇
  2005年   2558篇
  2004年   2502篇
  2003年   2227篇
  2002年   1897篇
  2001年   1645篇
  2000年   1536篇
  1999年   1218篇
  1998年   528篇
  1997年   468篇
  1996年   401篇
  1995年   393篇
  1994年   305篇
  1993年   298篇
  1992年   639篇
  1991年   515篇
  1990年   474篇
  1989年   479篇
  1988年   405篇
  1987年   390篇
  1986年   318篇
  1985年   329篇
  1984年   270篇
  1983年   224篇
  1982年   189篇
  1981年   162篇
  1980年   160篇
  1979年   220篇
  1978年   197篇
  1977年   179篇
  1976年   170篇
  1974年   196篇
  1972年   155篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
The maintenance of genome integrity requires a rapid and specific response to many types of DNA damage. The conserved and related PI3-like protein kinases, ataxia-telangiectasia mutated (ATM) and ATM-Rad3-related (ATR), orchestrate signal transduction pathways in response to genomic insults, such as DNA double-strand breaks (DSBs). It is unclear which proteins recognize DSBs and activate these pathways, but the Mre11/Rad50/NBS1 complex has been suggested to act as a damage sensor. Here we show that infection with an adenovirus lacking the E4 region also induces a cellular DNA damage response, with activation of ATM and ATR. Wild-type virus blocks this signaling through degradation of the Mre11 complex by the viral E1b55K/E4orf6 proteins. Using these viral proteins, we show that the Mre11 complex is required for both ATM activation and the ATM-dependent G(2)/M checkpoint in response to DSBs. These results demonstrate that the Mre11 complex can function as a damage sensor upstream of ATM/ATR signaling in mammalian cells.  相似文献   
992.
Choice and no-choice studies were conducted to determine the categories (antibiosis, antixenosis, and tolerance) of resistance of four buffalograsses (NE91-118, 'Bonnie Brae', 'Cody', and 'Tatanka') previously identified as resistant to the western chinch bug, Blissus occiduus Barber. Antibiosis studies found no significant differences in western chinch bug fecundity, nymphal development, or survival among the resistant and susceptible buffalograsses. Tolerance studies indicated that NE91-118, Cody, and Tatanka exhibited moderate-to-high levels of tolerance based on western chinch bug damage ratings and plant height, whereas Bonnie Brae exhibited moderate-to-low levels of tolerance. Choice studies indicated the presence of antixenosis in NE91-118, whereas Cody and Tatanka showed little or no antixenosis. Scanning electron microscopy was used to disclose morphological differences between NE91-118 (resistant) and '378' (susceptible). The epicuticular wax structures and trichome densities were similar between 378 and NE91-118, suggesting that morphological structures do not contribute to NE91-118 antixenosis.  相似文献   
993.
Summary Plant regeneration in Kentucky bluegrass (Poa pratensis L. cv. Touchdown) via culture of seedling tissues was investigated. When coleoptile, leaf, and stem sections of dark-germinated seedlings were cultured on Murashige and Skoog (MS) medium, different types of callus were produced, depending on the expiant source and growth regulator combinations. Only compact-friable callus (type 3) and moderately compact, friable callus (type 2) produced shoots upon subculture. The nonstructured watery callus (type 4) produced roots without shoots. Shoot differentiation from callus tissues was highest when the culture medium contained 0.2 mgL–1 picloram + 0.01 mgL–1 -naphthaleneacetic acid (NAA). Calli grown from coleoptiles had higher shoot regeneration frequency (32%) than that obtained from either stem sections (12%) or young leaf tissues (2%) of the same seedlings. Some organogenic callus lines produced exclusively green plants, while others produced albino shoots or a mixture of green and albino shoots. The green plants were multiplied in a medium containing 0.1 mgL–1 BAP plus either 0.2 mgL–1 picloram or 0.1 mgL–1 indole-3-acetic acid (IAA). Over 90% of the cultures in the shoot proliferation medium produced roots in 4 weeks. The rooted plants were successfully established in soil medium and grown in the greenhouse.Abbreviations BAP 6-benzylaminopurine - 2,4-D 2,4-dichlorophenoxyacetic acid - IAA indole-3-acetic acid - MS Murashige and Skoog (1962) medium - NAA -naphthaleneacetic acid - picloram 4-amino-3,5,6-trichloropicolinic acid - TDZ thidiazuron  相似文献   
994.
The fish gill is a multifunctional organ responsible for gas exchange and ionic regulation. It is hypothesized that both morphological and functional differentiation can be found in the gills of the aquatic air-breathing fish, Trichogaster leeri. To test this, we used the air-breathing fish, Trichogaster leeri, to investigate various morphological/functional parameters. First, we evaluated the importance of performing the aquatic surface respiration behavior in T. leeri. A reduced survival rate was observed when fish were kept in the restrained cages in hypoxic conditions. On the gross anatomy of gills, we found evidence of both morphological and functional modification in the first and the second gills and are responsible for ionic regulation. There were large-bore arterioarterial shunts in the fourth gill arch. It is specialized for the transport of oxygenated blood and is less responsive to environmental stress. In addition, the anterior and the posterior gills differed in the Na+, K+-ATPase activity upon ionic stresses. That is, only the Na+, K+-ATPase activity of the anterior two gills was up-regulated significantly in the deionized water. Lastly, we found that the number of mitochondria-rich cells in the first and the second gills increased following ionic stress and no difference was found in the third and the fourth gills following such an exposure. These results supported the hypothesis that there are morphological and functional differences between anterior and posterior gill arches within the air-breathing Trichogaster leeri. In contrast, no significant difference was found among gills in gross anatomy, filament density and Na+, K+-ATPase activity in the non-air-breather, Barbodes schwanenfeldi.  相似文献   
995.
Kelley MR  Lee WR 《Genetics》1983,104(2):279-299
As a model system for studying mutagenesis, the oocyte of Drosophila melanogaster has exhibited considerable complexity. Very few experiments have been conducted on the effect of exposing oocytes to chemical mutagens, presumably due to their lower mutational response relative to sperm and spermatids. This lower response may be due either to a change in probability of mutation induction per adduct due to a change in the type of DNA repair or to a lower dose of the mutagen to the female germ line. To study molecular dosimetry and DNA repair in the oocyte, the large number of intracellular constituents (mtDNA, RNA, nucleic acid precursors and large quantities of proteins and lipids) must be separated from nuclear DNA. In this paper we present results showing reliable separation of such molecules enabling us to detect scheduled nuclear and mitochondrial DNA synthesis. We also, by understanding the precise timing of such events, can detect unscheduled DNA synthesis (UDS) as a measure of DNA repair. Furthermore, by comparing the UDS results in a repair competent (Ore-R) vs. a repair deficient (mei-9L1 ) strain, we have shown the oocyte capable of DNA repair after treatment with ethyl methanesulfonate (EMS). We conclude that the important determinant of mutation induction in oocytes after treatment with EMS is the time interval between DNA alkylation and DNA synthesis after fertilization, i.e., the interruption of continuous DNA repair.  相似文献   
996.
In the chick ciliary ganglion, neuronal number is kept constant between St. 29 and St. 34 (E6-E8) despite a large amount of cell death. Here, we characterize the source of neurogenic cells in the ganglion as undifferentiated neural crest-derived cells. At St. 29, neurons and nonneuronal cells in the ciliary ganglion expressed the neural crest markers HNK-1 and p75(NTR). Over 50% of the cells were neurons at St. 29; of the nonneuronal cells, a small population expressed glial markers, whereas the majority was undifferentiated. When placed in culture, nonneuronal cells acquired immunoreactivity for HuD, suggesting that they had commenced neuronal differentiation. The newly differentiated neurons arose from precursors that did not incorporate bromodeoxyuridine. To test whether these precursors could undergo neural differentiation in vivo, purified nonneuronal cells from St. 29 quail ganglia were transplanted into chick embryos at St. 9-14. Subsequently, quail cells expressing neuronal markers were found in the chick ciliary ganglion. The existence of this precursor pool was transient because nonneuronal cells isolated from St. 38 ganglia failed to form neurons. Since all ciliary ganglion neurons are born prior to St. 29, these results demonstrate that there are postmitotic neural crest-derived precursors in the developing ciliary ganglion that can differentiate into neurons in the appropriate environment.  相似文献   
997.
Tryptophan (Trp) fluorescence quenching of phytochrome has been studied using anionic, cationic and neutral quenchers, I-, Cs+ and acrylamide, respectively, in an effort to understand the molecular differences between the Pr and Pfr forms. The data have been analyzed using both Stern-Volmer and modified Stern-Volmer kinetic treatments. The anionic quencher, I-, was proven to be an ineffective quencher with Stern-Volmer constants, Ksv, of 0.60 and 0.63 M-1, respectively, for the Pr and Pfr forms of phytochrome. The cationic quencher, Cs+, showed about a 2-fold difference in the Ksv of Pr and Pfr, indicating a significant change in the fluorescent Trp environments during the Pr to Pfr phototransformation. However, only 25-37% of the fluorescent Trp residues were accessible to the cationic quencher. Most of the fluorescent Trp residues were accessible to acrylamide, but the quenching by acrylamide was indistinguishable for the Pr and Pfr forms. An additional quenching by acrylamide after a saturated quenching with Cs+ showed more than 40% increase in the Ksv of Pfr over Pr. These observations, along with the finding of two distinct components in the Trp fluorescence lifetime, indicate the existence of Trp residues in at least two different sets of environments in the phytochrome protein. The two components of the fluorescence had lifetimes of 1.1 ns (major) and 4.7 ns (minor) for Pr and 0.9 ns (major) and 4.6 ns (minor) for Pfr. Fluorescence quenching was found to be both static and dynamic as the Stern-Volmer constants for the steady-state fluorescence quenching were higher than for the dynamic fluorescence quenching. Based on the quenching results, in combination with the location of Trp residues in the primary structure, we conclude that the Pr to Pfr phototransformation involves a significant conformation change in the phytochrome molecule, preferentially in the 74 kDa chromophore-bearing domain.  相似文献   
998.
Bacteria sense their population density and coordinate the expression of target genes, including virulence factors in Gram-negative bacteria, by the N-acylhomoserine lactones (AHLs)-dependent quorum-sensing (QS) mechanism. In contrast, several soil bacteria are able to interfere with QS by enzymatic degradation of AHLs, referred to as quorum quenching. A potent AHL-degrading enzyme, AiiA, of Bacillus thuringiensis has been reported to effectively attenuate the virulence of bacteria by quorum quenching. However, little is known about the role of AiiA in B. thuringiensis itself. In the present study, an aiiA-defective mutant was generated to investigate the role of AiiA in rhizosphere competence in the root system of pepper. The aiiA mutant showed no detectable AHL-degrading activity and was less effective for suppression of soft-rot symptom caused by Erwinia carotovora on the potato slice. On the pepper root, the survival rate of the aiiA mutant significantly decreased over time compared with that of wild type. Interestingly, viable cell count analysis revealed that the bacterial number and composition of E. carotovora were not different between treatments of wild type and the aiiA mutant, although root application of the aiiA mutant in pepper failed to protect the plant from root rot. These results provide evidence that AiiA can play an important role in rhizosphere competentce of B. thuringiensis and bacterial quorum quenching to Gram-negative bacteria without changing bacterial number or composition.  相似文献   
999.
Resistin has been linked to components of the metabolic syndrome, including obesity, insulin resistance, and hyperlipidemia. We hypothesized that resistin deficiency would reverse hyperlipidemia in genetic obesity. C57Bl/6J mice lacking resistin [resistin knockout (RKO)] had similar body weight and fat as wild-type mice when fed standard rodent chow or a high-fat diet. Nonetheless, hepatic steatosis, serum cholesterol, and very low-density lipoprotein (VLDL) secretion were decreased in diet-induced obese RKO mice. Resistin deficiency exacerbated obesity in ob/ob mice, but hepatic steatosis was drastically attenuated. Moreover, the levels of triglycerides, cholesterol, insulin, and glucose were reduced in ob/ob-RKO mice. The antisteatotic effect of resistin deficiency was related to reductions in the expression of genes involved in hepatic lipogenesis and VLDL export. Together, these results demonstrate a crucial role of resistin in promoting hepatic steatosis and hyperlipidemia in obese mice.  相似文献   
1000.
Background information. PCNA (proliferating cell nuclear antigen) is required for a wide range of cellular functions, including DNA replication and damage repair. To be functional, PCNA must associate with the replication and repair foci. In addition, PCNA also mediates targeting of certain replication and repair proteins to these foci. However, the mechanism is not yet known by which PCNA is imported into the nucleus, and then localized to the replication and repair foci. Results. We have found that an NLS (nuclear localization sequence) is present within the amino acid 101–120 segment of PCNA. An NLS‐deleted PCNA was localized in the cytoplasm and showed 5‐fold lower affinity for importin‐β than wild‐type, suggesting that PCNA may be imported into the nucleus by importin‐β via its NLS. We previously reported that the functional unit of PCNA is a double trimer (as opposed to single homotrimer), and Lys‐110 is essential for the formation of the double trimer complex [Naryzhny, Zhao and Lee ( 2005 ) J. Biol. Chem. 280 , 13888–13894]. The present study shows that the substitution of Lys‐110 within the NLS to an alanine residue did not affect its nuclear localization. However, the double‐trimer‐defective PCNA(K110A) was not localized at replication or repair foci. In contrast, the double‐trimer‐intact PCNA(K117A) mutant was targeted normally to replication and repair foci. Interestingly, in cells transfected with PCNA(K110A), but not PCNA(K117A), caspase‐3‐mediated chromosome fragmentation was activated. Conclusions. The present study suggests that the regulation of PCNA is intimately connected with that of DNA replication, repair and cell death signals, and raises the possibility that defects in the formation of the PCNA double‐trimer complex can cause apoptosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号