首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   0篇
  91篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   5篇
  2013年   1篇
  2012年   5篇
  2011年   4篇
  2010年   5篇
  2009年   6篇
  2008年   12篇
  2007年   12篇
  2006年   7篇
  2005年   2篇
  2004年   6篇
  2003年   7篇
  2002年   3篇
  2000年   1篇
  1996年   1篇
  1992年   1篇
  1991年   1篇
  1988年   2篇
排序方式: 共有91条查询结果,搜索用时 15 毫秒
1.
This study was focused on the screening of valuable genetic resources, such as promoters from metagenome, and describes a promoter trapping system with a bidirectional probe concept, which can select promoters or operons from various biological resources including metagenomic DNA. A pair of reporters, GFP and DsRed, facing the opposite direction without promoters, is an effective system that can function regardless of the direction of inserted promoters. The feasibility of this system was tested for the isolation of constitutively expressed promoters in E. coli from a soil metagenome, resulting in a potential pool of various promoters for practical application. The analyses of structural organization of the trapped genes demonstrated that constitutively expressible promoters in E. coli were broadly distributed within the metagenome, and suggested that some promoters were useful for the construction of expression vectors. Based on these observations, three constitutive promoters were employed in the expression vector system and their potentials for practical application were evaluated in terms of expression level, protein solubility, and effects on host growth.  相似文献   
2.
We examined the function of the rice (Oryza sativa L.) antiporter-regulating protein OsARP by overexpressing it in tobacco (Nicotiana tabacum L.). In public databases, this protein was annotated as a putative Os02g0465900 protein of rice. The OsARP gene was introduced into tobacco under the control of the cauliflower mosaic virus 35S promoter. The transformants were selected for their ability to grow on medium containing kanamycin. Incorporation of the transgene in the genome of tobacco was confirmed by PCR, and its expression was confirmed by Western blot analysis. Transgenic plants had better growth and vigor than non-transgenic plants under salt stress in vitro. Overexpression of OsARP in transgenic tobacco plants resulted in salt tolerance, and the plants had a higher rate of photosynthesis and effective PSII photon yield when compared with the wild type. The OsARP protein was localized in the tonoplast of rice plants. Transgenic plants accumulated more Na+ in their leaf tissue than did wild-type plants. It is conceivable that the toxic effect of Na+ in the cytosol might be reduced by sequestration into vacuoles. The rate of water loss was higher in the wild type than in transgenic plants under salt stress. Increased vacuolar solute accumulation and water retention could confer salt tolerance in transgenic plants. Tonoplast vesicles isolated from OsARP transgenic plants showed Na+/H+ exchange rates 3-fold higher than those of wild-type plants. These results suggest that OsARP on the tonoplasts plays an important role in compartmentation of Na+ into vacuoles. We suggest that OsARP is a new type of protein participating in Na+ uptake in vacuoles.  相似文献   
3.
To understand the function of each peroxidase (POD, EC 1.11.1.7) in terms of biotic stress, changes in POD specific activity and expression of 10 POD genes were investigated in four cultivars of sweetpotato (Ipomoea batatas) after infection with Pectobacterium chrysanthemi. POD specific activity (units mg(-1) protein) increased from 16 h after inoculation (HAI) in three varieties. POD activities of two cultivars, Shinwhangmi and White Star, reached a maximum level at 24 HAI by about three times compared to mock treatment (MT), and then decreased, whereas those of Zami and Yulmi continuously increased until 36 HAI. Native gel analysis revealed that one POD isoenzyme with a high electrophoretic mobility significantly increased in response to pathogen infection in all cultivars. Additionally, 10 POD genes displayed differential expression patterns upon bacterial infection by northern analysis. Several POD genes such as swpa2, swpa3, swpa4, swpa5, swpb1 were induced upon bacterial infection, but other genes were not. Particularly, swpa4 gene was markedly expressed in response to bacterial infection in four different cultivars, suggesting that this gene has a stress-inducible promoter. These results indicate that some specific POD isoenzymes are involved in defense in relation to pathogenesis of P. chrysanthemi in sweetpotato plants.  相似文献   
4.
The mammalian Galbeta1,3GalNAc-specific alpha2,3-sialyltransferase (ST3Gal I) was expressed as a secreted glycoprotein in High Five (Trichoplusia ni) cells. Using this recombinant ST3Gal I, we screened the synthetic hexapeptide combinatorial library to explore a sialyltransferase inhibitor. We found that the hexapeptide, NH(2)-GNWWWW, exhibited the most strong inhibition of ST3Gal I among five different hexapeptides that were finally selected. The kinetic analysis of ST3Gal I inhibition demonstrated that this hexapeptide could act as a competitive inhibitor (K(i) = 1.1 microm) on CMP-NeuAc binding to the enzyme. Moreover, the hexapeptide was shown to strongly inhibit both N-glycan-specific alpha2,3- and alpha2,6-sialyltranferase in vitro, suggesting that this peptide may inhibit the broad range of sialyltransferases regardless of their linkage specificity. The inhibitory activity in vivo was investigated by RCA-I lectin blot analyses and by metabolic d-[6-(3)H]GlcNH(2) radiolabeling analyses of N- and O-linked oligosaccharides in Chines hamster ovary cells. Our results demonstrate that the hexapeptide can act as a generic inhibitor of the N- and O-glycan-specific sialyltransferases in mammalian cells, which results in the significantly reduced NeuAc expression on cellular glycoproteins in vivo.  相似文献   
5.
Plants have diversified their leaf morphologies to adapt to diverse ecological niches. The molecular components responsible for regulating leaf morphology, however, have not been fully elucidated. By screening Arabidopsis activation-tagging lines, we identified a dominant mutant, which we designated longifolia1-1D (lng1-1D). lng1-1D plants were characterized by long petioles, narrow but extremely long leaf blades with serrated margins, elongated floral organs, and elongated siliques. The elongated leaves of the mutant were due to increased polar cell elongation rather than increased cell proliferation. Molecular characterization revealed that this phenotype was caused by overexpression of the novel gene LNG1, which was found to have a homolog, LNG2,in Arabidopsis. To further examine the role of the LNG genes, we characterized lng1 and lng2 loss-of-function mutant lines. In contrast to the elongated leaves of lng1-1D plants, the lng1 and lng2 mutants showed slightly decreased leaf length. Furthermore, the lng1-3 lng2-1 double mutant showed further decreased leaf length associated with less longitudinal polar cell elongation. The leaf widths in lng1-3 lng2-1 mutant plants were similar to those in wild type, implying that the role of LNG1 and LNG2 on polar cell elongation is similar to that of ROTUNDIFOLIA3 (ROT3). However, analysis of a lng1-3 lng2-1 rot3-1 triple mutant and of a lng1-1D rot3-1 double mutant indicated that LNG1 and LNG2 promote longitudinal cell elongation independently of ROT3. Taken together, these findings indicate that LNG1 and LNG2 are new components that regulate leaf morphology by positively promoting longitudinal polar cell elongation independently of ROT3 in Arabidopsis.  相似文献   
6.
7.
BPA, bisphenol A, a monomer of epoxy resins and polycarbonate plastic, is used in many consumer products including the plastic linings of cans for food and babies' bottles. BPA has been reported to cause reproductive toxicity and affects cells in rats and mice at high doses. In this study, the effect of BPA on protein expression in TM4 cells (a mouse Sertoli cell line) known to play an essential role in Spermatogenesis was investigated by two-dimensional electrophoresis (2-DE). After 16 h exposure to 50, 100, 150, 200, and 250 microM of BPA, the viability of TM4 cells decreased to about 90, 85, 78, 55, and 30% of control respectively. Approximately 800 protein spots in TM4 cells were analyzed by 2-DE with pH 4-7 linear immobilized pH gradient (IPG) Dry Strip, and 11 proteins which showed significantly different expression levels were identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). Among these, HSP 27 and placental calcium binding protein may be proteins differentially expressed by BPA exposure.  相似文献   
8.
The Δ5-3-ketosteroid isomerase from Pseudomonas putida biotype B has been crystallized. The crystals belong to the space group P212121 with unit cell dimensions of a = 36.48 Å, b = 74.30 Å, c = 96.02 Å, and contain one homodimer per asymmetric unit. Native diffraction data to 2.19 Å resolution have been obtained from one crystal at room temperature indicating that the crystals are quite suitable for structure determination by multiple isomorphous replacement.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号