首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21310篇
  免费   1497篇
  国内免费   11篇
  2023年   54篇
  2022年   183篇
  2021年   413篇
  2020年   247篇
  2019年   312篇
  2018年   532篇
  2017年   394篇
  2016年   681篇
  2015年   1128篇
  2014年   1225篇
  2013年   1397篇
  2012年   1831篇
  2011年   1713篇
  2010年   1104篇
  2009年   914篇
  2008年   1352篇
  2007年   1190篇
  2006年   1056篇
  2005年   975篇
  2004年   960篇
  2003年   779篇
  2002年   784篇
  2001年   629篇
  2000年   634篇
  1999年   423篇
  1998年   166篇
  1997年   129篇
  1996年   119篇
  1995年   87篇
  1994年   82篇
  1993年   69篇
  1992年   157篇
  1991年   125篇
  1990年   88篇
  1989年   103篇
  1988年   70篇
  1987年   65篇
  1986年   69篇
  1985年   53篇
  1984年   47篇
  1983年   37篇
  1982年   27篇
  1981年   24篇
  1978年   28篇
  1977年   23篇
  1976年   32篇
  1975年   29篇
  1973年   33篇
  1971年   23篇
  1969年   24篇
排序方式: 共有10000条查询结果,搜索用时 562 毫秒
431.
Fas-associated death domain (FADD) protein is an adapter molecule that bridges the interactions between membrane death receptors and initiator caspases. The death receptors contain an intracellular death domain (DD) which is essential to the transduction of the apoptotic signal. The kinase receptor-interacting protein 1 (RIP1) is crucial to programmed necrosis. The cell type interplay between FADD and RIP1, which mediates both necrosis and NF-κB activation, has been evaluated in other studies, but the mechanism of the interaction of the FADD and RIP1 proteins remain poorly understood. Here, we provided evidence indicating that the DD of human FADD binds to the DD of RIP1 in vitro. We developed a molecular docking model using homology modeling based on the structures of FADD and RIP1. In addition, we found that two structure-based mutants (G109A and R114A) of the FADD DD were able to bind to the RIP1 DD, and two mutations (Q169A and N171A) of FADD DD and four mutations (G595, K596, E620, and D622) of RIP1 DD disrupted the FADD–RIP1 interaction. Six mutations (Q169A, N171A, G595, K596, E620, and D622) lowered the stability of the FADD–RIP1 complex and induced aggregation that structurally destabilized the complex, thus disrupting the interaction.  相似文献   
432.
Escherichia coli Hsp31, encoded by hchA, is a heat-inducible molecular chaperone. We found that Hsp31 undergoes a conformational change via temperature-induced unfolding, generating a high molecular weight (HMW) form with enhanced chaperone activity. Although it has previously been reported that some subunits of the Hsp31 crystal structure show structural heterogeneity with increased hydrophobic surfaces, Hsp31 basically forms a dimer. We found that a C-terminal deletion (CΔ19) of Hsp31 exhibited structurally and functionally similar characteristics to that of the HMW form. Both the CΔ19 and HMW forms achieved a structure with considerably more β-sheets and less α-helices than the native dimeric form, exposing a portion of its hydrophobic surfaces. The structural alterations were determined from its spectral changes in circular dichroism, intrinsic fluorescence of tryptophan residues, and fluorescence of bis-ANS binding to a hydrophobic surface. Interestingly, during thermal transition, the dimeric Hsp31 undergoes a conformational change to the HMW species via the CΔ19 structure, as monitored with near-UV CD spectrum, implying that the CΔ19 resembles an intermediate state between the dimer and the HMW form. From these results, we propose that Hsp31 transforms itself into a fully functional chaperone by altering its tertiary and quaternary structures.  相似文献   
433.
In this study, nuclear magnetic resonance techniques coupled with multivariate data analysis were used for the metabolic profiling of mycelia and fruiting bodies of the entomopathogenic fungi, Cordyceps bassiana according to developmental stages. A direct extraction method using two deuterated solvents of D2O and CDCl3 was used to investigate the relative levels of identified metabolites in each extraction condition in the mycelium and fruiting body formation stages. There was a clear separation among mycelia and fruiting bodies with various developmental stages in partial least-squares discriminant analysis (PLS-DA) derived score plots. During the transition from mycelia to fruiting bodies, the major metabolic change observed was the conversion of glucose to mannitol, and beauvericin to phenylalanine and 1-hydroxyisovaleric acid. In the developmental stages of fruiting bodies studied, there was a clear separation between stage 3 and the other stages in PLS-DA derived score plots. Nineteen compounds including 13 amino acids, 2 nucleosides, 3 organic acids, and glucose showed the highest levels in stage 3 fruiting bodies. The flavonoid content in the fruiting bodies showed similar levels during stages 1, 2, and 3, whereas the level at stage 4 was significantly decreased compared to the other stages. Results suggest that the fruiting body of C. bassiana is richer in natural resources at stage 3 compared to the other fruiting body stages due to its high abundance of compounds including total flavonoids. The metabolome information acquired in this study can be useful criteria for the quality control of commercial use of C. bassiana.  相似文献   
434.
Sialidases release the terminal sialic acid residue from a wide range of sialic acid-containing polysaccharides. Bacteroides thetaiotaomicron, a symbiotic commensal microbe, resides in and dominates the human intestinal tract. We characterized the recombinant sialidase from B. thetaiotaomicron (BTSA) and demonstrated that it has broad substrate specificity with a relative activity of 97, 100 and 64 for 2,3-, 2,6- and 2,8-linked sialic substrates, respectively. The hydrolysis activity of BTSA was inhibited by a transition state analogue, 2-deoxy-2,3-dehydro-N-acetyl neuraminic acid, by competitive inhibition with a Ki value of 35 μM. The structure of BSTA was determined at a resolution of 2.3 Å. This structure exhibited a unique carbohydrate-binding domain (CBM) at its N-terminus (a.a. 23–190) that is adjacent to the catalytic domain (a.a. 191–535). The catalytic domain has a conserved arginine triad with a wide-open entrance for the substrate that exposes the catalytic residue to the surface. Unlike other pathogenic sialidases, the polysaccharide-binding site in the CBM is near the active site and possibly holds and positions the polysaccharide substrate directly at the active site. The structural feature of a wide substrate-binding groove and closer proximity of the polysaccharide-binding site to the active site could be a unique signature of the commensal sialidase BTSA and provide a molecular basis for its pharmaceutical application.  相似文献   
435.
Nanoporous network polymer nanocomposites with tunable pore size for size‐dependent selective ion transport are successfully prepared via the surface‐induced cross‐linking polymerization of methyl methacrylate (MMA) and 1,6‐hexanediol diacrylate (HDDA) on the surfaces of nanocrystalline TiO2 particles. The morphologies of the porous network polymer layer and nanopores were investigated by transmission electron microscopy (TEM), field emission scanning electron microscopy (FE‐SEM), and Brunauer–Emmett–Teller (BET) experiments. The porous layer size‐selectively screened the ions that contacted the nanocrystalline TiO2 particles, as demonstrated by ion conductivity measurements, electrochemical impedance spectroscopy (EIS), and transient absorption spectroscopy (TAS).  相似文献   
436.
Remarkable improvements in the electrochemical performance of Si materials for Li‐ion batteries have been recently achieved, but the inherent volume change of Si still induces electrode expansion and external cell deformation. Here, the void structure in Si‐encapsulating hollow carbons is optimized in order to minimize the volume expansion of Si‐based anodes and improve electrochemical performance. When compared to chemical etching, the hollow structure is achieved via electroless etching is more advanced due to the improved electrical contact between carbon and Si. Despite the very thick electrodes (30 ~ 40 μm), this results in better cycle and rate performances including little capacity fading over 50 cycles and 1100 mA h g?1 at 2C rate. Also, an in situ dilatometer technique is used to perform a comprehensive study of electrode thickness change, and Si‐encapsulating hollow carbon mitigates the volume change of electrodes by adoption of void space, resulting in a small volume increase of 18% after full lithiation corresponding with a reversible capacity of about 2000 mA h g?1.  相似文献   
437.
438.

Introduction

To assess whether the value of CYFRA21-1 in the aspirates of ultrasonography-guided fine-needle aspiration biopsy (US-FNAB) can contribute to improving the performances of US-FNAB in the diagnosis of axillary lymph node (LN) metastasis in breast cancer patients.

Methods

US-FNAB was performed in 156 axillary LNs in 152 breast cancer patients (mean age: 51.4 years, range: 17–92 years). Concentrations of CYFRA21-1 were measured from washouts of the syringe used during US-FNAB. Tumor marker concentrations, US-FNAB, intraoperative sentinel node biopsy (SNB), and surgical pathology results were reviewed and analyzed. For comparison, the values of CEA and CA15-3 were also measured from washouts.

Results

Among the 156 LNs, 75 (48.1%) were benign, and 81 (51.9%) were metastases. Mean concentrations of CYFRA21-1 were significantly higher in metastasis compared to benign LNs (P<0.001). US-FNAB combined to CYFRA21-1 showed significantly higher sensitivity, NPV, and accuracy compared to US-FNAB alone (all values P<0.05). All diagnostic indices of US-FNAB combined to CYFRA21-1 were significantly higher compared to US-FNAB combined with CEA or CA15-3 (all P<0.001). Of the 28 metastatic LNs which showed metastasis on SNB, CYFRA21-1 showed higher positive rate of 75.0% (CEA or CA15-3∶60.7%, P = 0.076).

Conclusion

Measuring CYFRA 21-1 concentrations from US-FNAB aspirates improves sensitivity, NPV, and accuracy of US-FNAB alone, and may contribute to reducing up to 75.0% of unnecessary intraoperative SNB. Compared to CEA or CA15-3, CYFRA21-1 shows significantly higher performances when combined to US-FNAB in the preoperative diagnosis of LN metastasis in breast cancer patients.  相似文献   
439.
Myeloperoxidase (MPO) functions as a key molecular component of the host defense system against diverse pathogens. We have previously reported that increased MPO levels and activity is a distinguishing feature of rotenone-exposed glial cells, and that either overactivation or deficiency of MPO leads to pathological conditions in the brain. Here, we provide that modulation of MPO levels in glia by resveratrol confers protective effects on rotenone-induced neurotoxicity. We show that resveratrol significantly reduced MPO levels but did not trigger abnormal nitric oxide (NO) production in microglia and astrocytes. Resveratrol-induced down-regulation of MPO, in the absence of an associated overproduction of NO, markedly attenuated rotenone-triggered inflammatory responses including phagocytic activity and reactive oxygen species production in primary microglia and astrocytes. In addition, impaired responses of primary mixed glia from Mpo −/− mice to rotenone were relieved by treatment with resveratrol. We further show that rotenone-induced neuronal injury, particularly dopaminergic cell death, was attenuated by resveratrol in neuron-glia co-cultures, but not in neurons cultured alone. Similar regulatory effects of resveratrol on MPO levels were observed in microglia treated with MPP+, another Parkinson’s disease-linked neurotoxin, supporting the beneficial effects of resveratrol on the brain. Collectively, our findings provide that resveratrol influences glial responses to rotenone by regulating both MPO and NO, and thus protects against rotenone-induced neuronal injury.  相似文献   
440.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号