首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1728篇
  免费   200篇
  国内免费   4篇
  2023年   11篇
  2022年   14篇
  2021年   29篇
  2020年   17篇
  2019年   40篇
  2018年   30篇
  2017年   28篇
  2016年   54篇
  2015年   93篇
  2014年   108篇
  2013年   126篇
  2012年   119篇
  2011年   109篇
  2010年   86篇
  2009年   71篇
  2008年   85篇
  2007年   85篇
  2006年   62篇
  2005年   59篇
  2004年   54篇
  2003年   49篇
  2002年   45篇
  2001年   54篇
  2000年   43篇
  1999年   28篇
  1998年   19篇
  1997年   24篇
  1996年   18篇
  1995年   23篇
  1994年   8篇
  1993年   15篇
  1992年   27篇
  1991年   27篇
  1990年   16篇
  1989年   21篇
  1988年   21篇
  1987年   15篇
  1985年   14篇
  1984年   13篇
  1983年   18篇
  1982年   12篇
  1981年   23篇
  1980年   11篇
  1979年   14篇
  1978年   8篇
  1977年   15篇
  1976年   13篇
  1974年   13篇
  1973年   8篇
  1972年   6篇
排序方式: 共有1932条查询结果,搜索用时 15 毫秒
101.
102.
103.
Yang JM  Chen YF  Tu YY  Yen KR  Yang YL 《PloS one》2007,2(5):e428
Limited structural information of drug targets, cellular toxicity possessed by lead compounds, and large amounts of potential leads are the major issues facing the design-oriented approach of discovering new leads. In an attempt to tackle these issues, we have developed a process of virtual screening based on the observation that conformational rearrangements of the dengue virus envelope protein are essential for the mediation of viral entry into host cells via membrane fusion. Screening was based solely on the structural information of the Dengue virus envelope protein and was focused on a target site that is presumably important for the conformational rearrangements necessary for viral entry. To circumvent the issue of lead compound toxicity, we performed screening based on molecular docking using structural databases of medical compounds. To enhance the identification of hits, we further categorized and selected candidates according to their novel structural characteristics. Finally, the selected candidates were subjected to a biological validation assay to assess inhibition of Dengue virus propagation in mammalian host cells using a plaque formation assay. Among the 10 compounds examined, rolitetracycline and doxycycline significantly inhibited plaque formation, demonstrating their inhibitory effect on dengue virus propagation. Both compounds were tetracycline derivatives with IC(50)s estimated to be 67.1 microM and 55.6 microM, respectively. Their docked conformations displayed common hydrophobic interactions with critical residues that affected membrane fusion during viral entry. These interactions will therefore position the tetracyclic ring moieties of both inhibitors to bind firmly to the target and, subsequently, disrupt conformational rearrangement and block viral entry. This process can be applied to other drug targets in which conformational rearrangement is critical to function.  相似文献   
104.
The archives of Flora Medicinal, an ancient pharmaceutical laboratory that supported ethnomedical research in Brazil for more than 30 years, were searched for plants with antimalarial use. Forty plant species indicated to treat malaria were described by Dr. J. Monteiro da Silva (Flora Medicinal leader) and his co-workers. Eight species, Bathysa cuspidata, Cosmos sulphureus, Cecropia hololeuca, Erisma calcaratum, Gomphrena arborescens, Musa paradisiaca, Ocotea odorifera, and Pradosia lactescens, are related as antimalarial for the first time in ethnobotanical studies. Some species, including Mikania glomerata, Melampodium divaricatum, Galipea multiflora, Aspidosperma polyneuron, and Coutarea hexandra, were reported to have activity in malaria patients under clinical observation. In the information obtained, also, there were many details about the appropriate indication of each plant. For example, some plants are indicated to increase others' potency. There are also plants that are traditionally employed for specific symptoms or conditions that often accompany malaria, such as weakness, renal failure or cerebral malaria. Many plants that have been considered to lack activity against malaria due to absence of in vitro activity against Plasmodium can have other mechanisms of action. Thus researchers should observe ethnomedical information before deciding which kind of screening should be used in the search of antimalarial drugs.  相似文献   
105.
106.
Mitochondrial damage is a well known cause of mitochondria-related diseases. A major mechanism underlying the development of mitochondria-related diseases is thought to be an increase in intracellular oxidative stress produced by impairment of the mitochondrial electron transport chain (ETC). However, clear evidence of intracellular free radical generation has not been clearly provided for mitochondrial DNA (mtDNA)-damaged cells. In this study, using the novel fluorescence dye, 2-[6-(4'-hydroxy)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid (HPF), which was designed to detect hydroxyl radicals (*OH), intracellular free radical formation was examined in 143B cells (parental cells), 143B-rho(0) cells (mtDNA-lacking cells), 87 wt (cybrid), and cybrids of 4977-bp mtDNA deletion (common deletion) cells containing the deletion with 0%, 5%, 50% and >99% frequency (HeLacot, BH5, BH50 and BH3.12, respectively), using a laser confocal microscope detection method. ETC inhibitors (rotenone, 3-nitropropionic acid, thenoyltrifluoroacetone, antimycin A and sodium cyanide) were also tested to determine whether inhibitor treatment increased intracellular reactive oxygen species (ROS) generation. A significant increase in ROS for 143B-rho(0) cells was observed compared with 143B cells. However, for the 87 wt cybrid, no increase was observed. An increase was also observed in the mtDNA-deleted cells BH50 and BH3.12. The ETC inhibitors increased intracellular ROS in both 143B and 143B-rho(0) cells. Furthermore, in every fluorescence image, the fluorescence dye appeared localized around the nuclei. To clarify the localization, we double-stained cells with the dye and MitoTracker Red. The resulting fluorescence was consistently located in mitochondria. Furthermore, manganese superoxide dismutase (MnSOD) cDNA-transfected cells had decreased ROS. These results suggest that more ROS are generated from mitochondria in ETC-inhibited and mtDNA-damaged cells, which have impaired ETC.  相似文献   
107.
108.
AG 331 is a novel thymidylate synthase inhibitor currently in Phase I clinical trial. To determine the pharmacokinetic parameters of AG 331 in human subjects, a suitable analytical method was developed using high-performance liquid chromatography. Serum and urine samples were prepared using both solid-phase extraction and solvent extraction. Either 4,4′-diaminodiphenyl sulfone or benz[cd]indole-2(1H)-one were used as internal standards for the method. A reversed-phase C18 analytical column completely resolved the drug and internal standard peaks from non-specific substances present in biological matrix. The method was validated for precision, accuracy, and reproducibility in serum and was linear over a concentration range of 50–2000 ng/ml, with a limit of detection of 20.0 ng/ml and a quantifiable limit of 50 ng/ml.  相似文献   
109.
A Sepharose CL-4B-binding protein, Tachypleus plasma lectin 1 (TPL-1), and a lipopolysaccharide (LPS)-binding protein, Tachypleus plasma lectin-2 (TPL-2), have been isolated from the plasma of Tachypleus tridentatus and biochemically characterized. Each protein is coded by a homologous family of multigenes. TPL-1 binds to Sepharose CL-4B and was eluted with buffer containing 0.4 m GlcNAc. The deduced amino acid sequence of TPL-1 consisted of 232 amino acids with an N-glycosylation site, Asn-Gly-Ser at residues 74-76. It shares a 65% sequence identity and similar internal repeats of about 20 amino acid motifs with tachylectin-1. Tachylectin-1 was identified as a lipopolysaccharide-agarose binding nonglycosylated protein from the amebocytes of T. tridentatus. TPL-2 was eluted from the LPS-Sepharose CL-4B affinity column in buffer containing 0.4 m GlcNAc and 2 m KCl. The deduced amino acid sequence of TPL-2 consisted of 128 amino acids with an N-glycosylation site, Asn-Cys-Thr, at positions 3-5. It shares an 80% sequence identity with tachylectin-3, isolated from the amebocytes of T. tridentatus. TPL-2 purified by LPS-affinity column from the plasma predominantly exists as a dimer of a glycoprotein with an apparent molecular mass of 36 kDa. Tachylectin-3 is an intracellular nonglycosylated protein that also exists as a dimer in solution with an apparent molecular mass of 29 kDa. It recognizes Gram-negative bacteria through the 0-antigen of LPS. Western blot analyses showed that, in the plasma, TPL-1 and TPL-2 exist predominantly as oligomers with molecular masses above 60 kDa. They both bind to Gram-positive and Gram-negative bacteria, and this binding is inhibited by GlcNAc. Possible binding site of TPL-1 and TPL-2 to the bacteria could be at the NAc moiety of GlcNAc-MurNAc of the peptidoglycan. The physiological function of TPL-1 and TPL-2 is most likely related to their ability to form a cluster of interlocking molecules to immobilize and entrap invading organisms.  相似文献   
110.
The antioxidant properties of cinnamophilin were evaluated by studying its ability to react with relevant reactive oxygen species, and its protective effect on cultured cells and biomacromolecules under oxidative stress. Cinnamophilin concentration-dependently suppressed non-enzymatic iron-induced lipid peroxidation in rat brain homogenates with an IC50 value of 8.0+/-0.7 microM and iron ion/ADP/ascorbate-initiated rat liver mitochondrial lipid peroxidation with an IC50 value of 17.7+/-0.2 microM. It also exerted an inhibitory activity on NADPH-dependent microsomal lipid peroxidation with an IC50 value of 3.4+/-0.1 microM without affecting microsomal electron transport of NADPH-cytochrome P-450 reductase. Both 1,1-diphenyl-2-picrylhydrazyl and 2,2'-azo-bis(2-amidinopropane) dihydrochloride-derived peroxyl radical tests demonstrated that cinnamophilin possessed marked free radical scavenging capacity. Cinnamophilin significantly protected cultured rat aortic smooth muscle cells (A7r5) against alloxan/iron ion/H2O2-induced damage resulting in cytoplasmic membranous disturbance and mitochondrial potential decay. By the way, cinnamophilin inhibited copper-catalyzed oxidation of human low-density lipoprotein, as measured by fluorescence intensity and thiobarbituric acid-reactive substance formation in a concentration-dependent manner. On the other hand, it was reactive toward superoxide anions generated by the xanthine/xanthine oxidase system and the aortic segment from aged spontaneously hypertensive rat. Furthermore, cinnamophilin exerted a divergent effect on the respiratory burst of human neutrophil by different stimulators. Our results show that cinnamophilin acts as a novel antioxidant and cytoprotectant against oxidative damage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号