首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1866篇
  免费   129篇
  2023年   3篇
  2022年   18篇
  2021年   30篇
  2020年   16篇
  2019年   21篇
  2018年   30篇
  2017年   12篇
  2016年   51篇
  2015年   100篇
  2014年   94篇
  2013年   112篇
  2012年   154篇
  2011年   159篇
  2010年   102篇
  2009年   84篇
  2008年   85篇
  2007年   103篇
  2006年   79篇
  2005年   86篇
  2004年   108篇
  2003年   78篇
  2002年   83篇
  2001年   49篇
  2000年   44篇
  1999年   41篇
  1998年   20篇
  1997年   13篇
  1996年   17篇
  1995年   12篇
  1994年   6篇
  1993年   12篇
  1992年   20篇
  1991年   17篇
  1990年   12篇
  1989年   20篇
  1988年   13篇
  1987年   10篇
  1986年   10篇
  1985年   8篇
  1984年   9篇
  1983年   3篇
  1981年   3篇
  1980年   3篇
  1979年   5篇
  1978年   5篇
  1977年   7篇
  1975年   10篇
  1974年   4篇
  1972年   2篇
  1966年   2篇
排序方式: 共有1995条查询结果,搜索用时 15 毫秒
141.
SUMMARY Vertebrate hearts have evolved from undivided tubular hearts of chordate ancestors. One of the most intriguing issues in heart evolution is the abrupt appearance of multichambered hearts in the agnathan vertebrates. To explore the developmental mechanisms behind the drastic morphological changes that led to complex vertebrate hearts, we examined the developmental patterning of the agnathan lamprey Lethenteron japonicum . We isolated lamprey orthologs of genes thought to be essential for heart development in chicken and mouse embryos, including genes responsible for differentiation and proliferation of the myocardium ( LjTbx20, LjTbx4/5 , and LjIsl1/2A ), establishment of left–right heart asymmetry ( LjPitxA ), and partitioning of the heart tube ( LjTbx2/3A ), and studied their expression patterns during lamprey cardiogenesis. We confirmed the presence of the cardiac progenitors expressing LjIsl1/2A in the pharyngeal and splanchnic mesoderm and the heart tube of the lamprey. The presence of LjIsl1/2A -positive cardiac progenitor cells in cardiogenesis may have permitted an increase of myocardial size in vertebrates. We also observed LjPitxA expression in the left side of lamprey cardiac mesoderm, suggesting that asymmetric expression of Pitx in the heart has been acquired in the vertebrate lineage. Additionally, we observed LjTbx2/3A expression in the nonchambered myocardium, supporting the view that acquisition of Tbx2/3 expression may have allowed primitive tubular hearts to partition, giving rise to multichambered hearts.  相似文献   
142.
We have developed a new NIR fluorescent probe based on an ytterbium(III) (E)‐1‐(pyridin‐2‐yl‐diazenyl)naphthalen‐2‐ol (PAN) complex. This probe emits near‐infrared luminescence derived from the Yb ion through excitation of the PAN moiety with visible light (λex = 530 nm, λem = 975 nm). The results support the possible utility of the probe for in vivo fluorescence molecular imaging. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
143.
144.
145.
146.
T-DNA-tagged rice plants were screened under cold- or salt-stress conditions to determine the genes involved in the molecular mechanism for their abiotic-stress response. Line 0-165-65 was identified as a salt-responsive line. The gene responsible for this GUS-positive phenotype was revealed by inverse PCR as OsGSK1 (O ryza s ativa g lycogen s ynthase k inase3-like gene 1), a member of the plant GSK3/SHAGGY-like protein kinase genes and an orthologue of the Arabidopsis b rassinosteroid in sensitive 2 (BIN2), AtSK21. Northern blot analysis showed that OsGSK1 was most highly detected in the developing panicles, suggesting that its expression is developmental stage specific. Knockout (KO) mutants of OsGSK1 showed enhanced tolerance to cold, heat, salt, and drought stresses when compared with non-transgenic segregants (NT). Overexpression of the full-length OsGSK1 led to a stunted growth phenotype similar to the one observed with the gain-of-function BIN/AtSK21 mutant. This suggests that OsGSK1 might be a functional rice orthologue that serves as a negative regulator of brassinosteroid (BR)-signaling. Therefore, we propose that stress-responsive OsGSK1 may have physiological roles in stress signal-transduction pathways and floral developmental processes. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Serry Koh and Sang-Choon Lee are co-first authors.  相似文献   
147.
148.
Fluctuations in cytosolic Ca(2+) are crucial for a variety of cellular processes including many aspects of development. Mobilization of intracellular Ca(2+) stores via the production of inositol trisphosphate (IP(3)) and the consequent activation of IP(3)-sensitive Ca(2+) channels is a ubiquitous means by which diverse stimuli mediate their cellular effects. Although IP(3) receptors have been well studied at fertilization, information regarding their possible involvement during subsequent development is scant. In the present study we examined the role of IP(3) receptors in early development of the zebrafish. We report the first molecular analysis of zebrafish IP(3) receptors which indicates that, like mammals, the zebrafish genome contains three distinct IP(3) receptor genes. mRNA for all isoforms was detectable at differing levels by the 64 cell stage, and IP(3)-induced Ca(2+) transients could be readily generated (by flash photolysis) in a controlled fashion throughout the cleavage period in vivo. Furthermore, we show that early blastula formation was disrupted by pharmacological blockade of IP(3) receptors or phospholipase C, by molecular inhibition of the former by injection of IRBIT (IP(3) receptor-binding protein released with IP(3)) and by depletion of thapsigargin-sensitive Ca(2+) stores after completion of the second cell cycle. Inhibition of Ca(2+) entry or ryanodine receptors, however, had little effect. Our work defines the importance of IP(3) receptors during early development of a genetically and optically tractable model vertebrate organism.  相似文献   
149.
Gene transfer techniques possess tremendous potential for treating diseases and for facilitating the study of basic physiological processes. However, further development of efficient and safe methods for gene transfer is needed. The purpose of this study was to test the hypothesis that mechanical strain increases the transfer of DNA to differentiated skeletal muscle cells. We tested this hypothesis by applying cyclic strain to cultured skeletal myotubes either prior to or immediately after the introduction of exogenous DNA complexed with lipids, with strains of varying magnitude (10%, 20% and 30%), number (1800, 3600 and 7200 strain cycles) and frequency (0.5, 1.0 and 1.5 Hz). Results demonstrated that DNA transfection was increased by exposing muscle cells to cyclic strain, and that strain magnitude, number and frequency each influenced DNA transfection. Optimal strain conditions (20% strain magnitude, 3600 cycles applied at 1 Hz) were utilized to examine the role of membrane transport systems in strain-induced increases in DNA transfection. Filipin III was used to inhibit caveolar transport and was found to inhibit strain-mediated increases in DNA transfection, whereas chlorpromazine, used to inhibit clathrin-coated vesicle transport, had no effect. These results indicate that mechanical strain may be an effective method for increasing DNA transfection in skeletal muscle through enhanced caveolar transport.  相似文献   
150.
We previously reported that fibroblast growth factor 2 (FGF2) facilitated the differentiation of transplanted bone marrow cells (BMCs) into hepatocytes. Our earlier study also demonstrated that administration of FGF2 in combination with bone marrow transplantation (BMT) synergistically activated tumor necrosis factor-alpha signaling and significantly improved liver function and prognosis more than BMT alone. However, the way that it affected the extracellular matrix remained unclear. Here, we investigated the effect of FGF2 treatment together with BMT on liver fibrosis in mice treated with carbon tetrachloride (CCl4). Transplantation of BMCs and concurrent treatment with FGF2 caused a statistically significant reduction in CCl4-induced liver fibrosis that was accompanied by strong expression of matrix metalloproteinase 9 as compared with FGF2-only treatment or BMT alone. Moreover, in this process, the proliferation of bone-marrow-derived cells was accelerated without causing apoptosis. Thus, the administration of FGF2 in combination with BMT synergistically improves CCl4-induced liver fibrosis in mice. This treatment has the potential of being an effective therapy for patients with liver cirrhosis. This study was supported by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (nos. 16390211 and 16590597) and for translational research from the Ministry of Health, Labor and Welfare (H-trans-5 and H17-Special-015).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号