首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6152篇
  免费   582篇
  国内免费   223篇
  2024年   13篇
  2023年   51篇
  2022年   126篇
  2021年   167篇
  2020年   142篇
  2019年   203篇
  2018年   232篇
  2017年   189篇
  2016年   267篇
  2015年   390篇
  2014年   423篇
  2013年   470篇
  2012年   544篇
  2011年   499篇
  2010年   370篇
  2009年   301篇
  2008年   363篇
  2007年   351篇
  2006年   277篇
  2005年   261篇
  2004年   265篇
  2003年   223篇
  2002年   257篇
  2001年   75篇
  2000年   74篇
  1999年   73篇
  1998年   45篇
  1997年   49篇
  1996年   30篇
  1995年   29篇
  1994年   22篇
  1993年   10篇
  1992年   15篇
  1991年   19篇
  1990年   9篇
  1989年   9篇
  1988年   7篇
  1987年   11篇
  1986年   8篇
  1985年   7篇
  1983年   5篇
  1979年   5篇
  1975年   6篇
  1974年   6篇
  1973年   5篇
  1972年   7篇
  1971年   7篇
  1969年   5篇
  1968年   4篇
  1967年   6篇
排序方式: 共有6957条查询结果,搜索用时 15 毫秒
51.
Direct conversion of mechanical energy into direct current (DC) by triboelectric nanogenerators (TENGs) is one of the desired features in terms of energy conversion efficiency. Although promising applications have been reported using the triboelectric effect, effective DC generating TENGs must be developed for practical purposes. Here, it is reported that continuous DC generation within a TENG itself, without any circuitry, can be achieved by triggering air breakdown via triboelectrification. It is demonstrated that DC generation occurs in combination with i) charge accumulation to generate air breakdown, ii) incident discharge (microdischarge), and iii) conveyance of charges to make the device sustainable. 10.5 mA m?2 of output current and 10.6 W m?2 of output power at 33 MΩ load resistance are achieved. Compared to the best DC generating TENGs ever reported, the TENG in this present study generates about 20 times larger root‐mean square current density.  相似文献   
52.
Despite their exceptionally high capacity, overlithiated layered oxides (OLO) have not yet been practically used in lithium‐ion battery cathodes due to necessary toxic/complex chemical activation processes and unsatisfactory electrochemical reliability. Here, a new class of ecofriendly chemical activation strategy based on amphiphilic deoxyribose nucleic acid (DNA)‐wrapped multiwalled carbon nanotubes (MWCNT) is demonstrated. Hydrophobic aromatic bases of DNA have a good affinity for MWCNT via noncovalent π–π stacking interactions, resulting in core (MWCNT)‐shell (DNA) hybrids (i.e., DNA@MWCNT) featuring the predominant presence of hydrophilic phosphate groups (coupled with Na+) in their outmost layers. Such spatially rearranged Na+–phosphate complexes of the DNA@MWCNT efficiently extract Li+ from monoclinic Li2MnO3 of the OLO through cation exchange reaction of Na+–Li+, thereby forming Li4Mn5O12‐type spinel nanolayers on the OLO surface. The newly formed spinel nanolayers play a crucial role in improving the structural stability of the OLO and suppressing interfacial side reactions with liquid electrolytes, eventually providing significant improvements in the charge/discharge kinetics, cyclability, and thermal stability. This beneficial effect of the DNA@MWCNT‐mediated chemical activation is comprehensively elucidated by an in‐depth structural/electrochemical characterization.  相似文献   
53.
Output voltage and self‐discharge rate are two important performance indices for supercapacitors, which have long been overlooked, though these play a very significant role in their practical application. Here, a zinc anode is used to construct a zinc ion hybrid capacitor. Expanded operating voltage of the hybrid capacitor is obtained with novel electrolytes. In addition, significantly improved anti‐self‐discharge ability is achieved. The phosphorene‐based zinc ion capacitor exploiting a “water in salt” electrolyte with a working potential can reach 2.2 V, delivering 214.3 F g?1 after 5000 cycles. The operating voltage is further extended to 2.5 V through the use of an organic solvent as the electrolyte; the solvent is prepared by adding 0.2 m ZnCl2 into the tetraethylammonium tetrafluoroborate in propylene carbonate (Et4NBF4/PC) solvent, and it exhibits 105.9 F g?1 even after 9500 cycles. More importantly, the phosphorene‐based capacitors possess excellent anti‐self‐discharge performance. The capacitors retain 76.16% of capacitance after resting for 300 h. The practical application of the zinc ion capacitor is demonstrated through a flexible paper‐based printed microcapacitor. It is believed that the developed zinc ion capacitor can effectively resolve the severe self‐discharge problem of supercapacitors. Moreover, high‐voltage zinc ion capacitors provide more opportunities for the application of supercapacitors.  相似文献   
54.
55.
56.
Li metal, which has a high theoretical specific capacity and low redox potential, is considered to the most promising anode material for next‐generation Li ion‐based batteries. However, it also exhibits a disadvantageous solid electrolyte interphase (SEI) layer problem that needs to be resolved. Herein, an advanced separator composed of reduced graphene oxide fiber attached to aramid paper (rGOF‐A) is introduced. When rGOF‐A is applied, F? anions, generated from the decomposition of the LiPF6 electrolyte during the SEI layer formation process form semi‐ionic C? F bonds along the surface of rGOF. As Li+ ions are plated, the “F‐doped” rGO surface induces the formation of LiF, which is known as a component of a chemically stable SEI, therefore it helps the Li metal anode to operate stably at a high current of 20 mA cm?2 with a high capacity of 20 mAh cm?2. The proposed rGOF‐A separator successfully achieves a stable SEI layer that could resolve the interfacial issues of the Li metal anode.  相似文献   
57.
Bioprocess and Biosystems Engineering - The β-glucanase produced from Bacillus sp. CSB55 not only depicts the potent industrial characteristics but also relates as bio-industrial catalyst...  相似文献   
58.
The population abundance, infestation, and harmful effects of the aphid Aphis craccivora Koch (Hemiptera: Aphididae) were studied on four bean plant species, namely the country bean (Lablab purpureus var. BARI Seem 1), the yard‐long bean (Vigna sesquipedalis var. BARI Borboti 1), the hyacinth bean (Dolichos lablab var. BARI Seem 6), and the bush bean (Phaseolus vulgaris var. BARI Jar Seem 3). Aphid abundance and infestation on the leaves, inflorescences, flowers, and pods differed significantly among the bean plant species, with P. vulgaris and V. sesquipedalis having the lowest and highest results, respectively. Aphid severity grade and the number of trichomes of the bean plant species were negatively correlated. The duration of the growth stages among the bean plant species were significantly different, with V. sesquipedalis having the shortest durations. Aphid abundance and infestation significantly affected the physical and phytochemical characteristics of the bean plant species. The highest reduction of number of leaves, flower inflorescences, and pod inflorescences per plant, and moisture and chlorophyll content in the leaves was found in L. purpureus. The results for V. sesquipedalis revealed the highest reduction in plant height, seed weight, and pH, while those of D. lablab showed the highest reduction in leaf area.  相似文献   
59.
Pseudomonas putida has emerged as a promising host for the production of chemicals and materials thanks to its metabolic versatility and cellular robustness. In particular, P. putida KT2440 has been officially classified as a generally recognized as safe (GRAS) strain, which makes it suitable for the production of compounds that humans directly consume, including secondary metabolites of high importance. Although various tools and strategies have been developed to facilitate metabolic engineering of P. putida, modification of large genes/clusters essential for heterologous expression of natural products with large biosynthetic gene clusters (BGCs) has not been straightforward. Recently, we reported a RecET-based markerless recombineering system for engineering P. putida and demonstrated deletion of multiple regions as large as 101.7 kb throughout the chromosome by single rounds of recombineering. In addition, development of a donor plasmid system allowed successful markerless integration of heterologous BGCs to P. putida chromosome using the recombineering system with examples of – but not limited to – integrating multiple heterologous BGCs as large as 7.4 kb to the chromosome of P. putida KT2440. In response to the increasing interest in our markerless recombineering system, here we provide detailed protocols for markerless gene knockout and integration for the genome engineering of P. putida and related species of high industrial importance.  相似文献   
60.
Feng  Yan  Hu  Zheng-Da  Balmakou  Aliaksei  Khakhomov  Sergei  Semchenko  Igor  Wang  Jicheng  Liu  Dongdong  Sang  Tian 《Plasmonics (Norwell, Mass.)》2020,15(6):1869-1874
Plasmonics - Graphene-based hyperbolic metamaterials are well known for their optical anisotropy, high absorption of electromagnetic radiation, and low energy loss. We proposed a novel multilayer...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号