首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9439篇
  免费   753篇
  国内免费   41篇
  10233篇
  2024年   10篇
  2023年   48篇
  2022年   128篇
  2021年   187篇
  2020年   145篇
  2019年   204篇
  2018年   259篇
  2017年   237篇
  2016年   353篇
  2015年   570篇
  2014年   616篇
  2013年   689篇
  2012年   790篇
  2011年   764篇
  2010年   549篇
  2009年   468篇
  2008年   585篇
  2007年   571篇
  2006年   504篇
  2005年   467篇
  2004年   417篇
  2003年   367篇
  2002年   381篇
  2001年   150篇
  2000年   136篇
  1999年   123篇
  1998年   66篇
  1997年   51篇
  1996年   50篇
  1995年   34篇
  1994年   34篇
  1993年   21篇
  1992年   33篇
  1991年   31篇
  1990年   25篇
  1989年   22篇
  1988年   13篇
  1987年   13篇
  1986年   11篇
  1985年   6篇
  1984年   10篇
  1983年   7篇
  1979年   9篇
  1978年   5篇
  1977年   8篇
  1976年   5篇
  1975年   9篇
  1974年   6篇
  1972年   5篇
  1969年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
52.
IL-35 subunit EBI3 is up-regulated in pulmonary fibrosis tissues. In this study, we investigated the pathological role of EBI3 in pulmonary fibrosis and dissected the underlying molecular mechanism. Bleomycin-induced pulmonary fibrosis mouse model was established, and samples were performed gene expression analyses through RNAseq, qRT-PCR and Western blot. Wild type and EBI3 knockout mice were exposed to bleomycin to investigate the pathological role of IL-35, via lung function and gene expression analyses. Primary lung epithelial cells were used to dissect the regulatory mechanism of EBI3 on STAT1/STAT4 and STAT3. IL-35 was elevated in both human and mouse with pulmonary fibrosis. EBI3 knockdown aggravated the symptoms of pulmonary fibrosis in mice. EBI3 deficiency enhanced the expressions of fibrotic and extracellular matrix-associated genes. Mechanistically, IL-35 activated STAT1 and STAT4, which in turn suppressed DNA enrichment of STAT3 and inhibited the fibrosis process. IL-35 might be one of the potential therapeutic targets for bleomycin-induced pulmonary fibrosis.  相似文献   
53.
The parasite Plasmodium vivax is the most frequent cause of malaria outside of sub-Saharan Africa, but efforts to develop viable vaccines against P. vivax so far have been inadequate. We recently developed pathogen-mimicking polymeric vaccine nanoparticles composed of the FDA-approved biodegradable polymer poly(lactide-co-glycolide) acid (PLGA) "enveloped" by a lipid membrane. In this study, we sought to determine whether this vaccine delivery platform could be applied to enhance the immune response against P. vivax sporozoites. A candidate malaria antigen, VMP001, was conjugated to the lipid membrane of the particles, and an immunostimulatory molecule, monophosphoryl lipid A (MPLA), was incorporated into the lipid membranes, creating pathogen-mimicking nanoparticle vaccines (VMP001-NPs). Vaccination with VMP001-NPs promoted germinal center formation and elicited durable antigen-specific antibodies with significantly higher titers and more balanced Th1/Th2 responses in vivo, compared with vaccines composed of soluble protein mixed with MPLA. Antibodies raised by NP vaccinations also exhibited enhanced avidity and affinity toward the domains within the circumsporozoite protein implicated in protection and were able to agglutinate live P. vivax sporozoites. These results demonstrate that these VMP001-NPs are promising vaccines candidates that may elicit protective immunity against P. vivax sporozoites.  相似文献   
54.
55.
Sphingosine-1-phosphate (S1P) is considered to be an important regulator of diverse biological processes acting as a natural ligand to EDG receptors. As a preliminary study to develop potent and selective agonist and antagonist for EDG receptors, we report synthesis of S1P stereoisomers and analogues and their binding affinities to EDG-1, -3, and -5.  相似文献   
56.
An all solid state potentiometric immunosensor (ASPI) has been developed to study the activation process of neuronal nitric oxide synthase (nNOS), the enzyme involved in the synthesis of nitric oxide generated under physiological conditions. At first, an all solid state H+-selective ISE was fabricated with the carboxylated poly(vinyl chloride) (PVC-COOH) film containing H+ ionophore, antibody was then immobilized on the polymer layer. The immunocomplex formation was detected by monitoring pH change due to interaction between urease labeled secondary antibody and antigen. Experimental parameters such as the amount of phosphorylated nNOS immobilized on the electrode surface and pH responses due to the antibody–antigen reaction were studied in detail. The calibration plot of the potentiometric potential vs. phosphorylated nNOS concentration exhibited a linear relationship in the range of 3.4–340.0 μg/ml. The calibration sensitivity of the phosphorylated nNOS immunosensor was −0.073 ± 0.002 mV/μg ml−1. The detection limit of nNOS was determined to be 0.2 μg/ml based on five-time measurements (95% confidence level, k = 3, n = 5). The reliability of the immunosensor was examined with rat brain tissues as well as neuronal cells, and the results shown were good, implying a promising approach for a novel electrochemical immunosensor platform with potential applications to clinical diagnosis.  相似文献   
57.
Pyocyanin (N-methyl-1-hydroxyphenazine), a redox-active virulence factor produced by the human pathogen Pseudomonas aeruginosa, is known to compromise mucociliary clearance. Exposure of human bronchial epithelial cells to pyocyanin increased the rate of cellular release of H(2)O(2) threefold above the endogenous H(2)O(2) production. Real-time measurements of the redox potential of the cytosolic compartment using the redox sensor roGFP1 showed that pyocyanin (100 microM) oxidized the cytosol from a resting value of -318+/-5 mV by 48.0+/-4.6 mV within 2 h; a comparable oxidation was induced by 100 microM H(2)O(2). Whereas resting Cl(-) secretion was slightly activated by pyocyanin (to 10% of maximal currents), forskolin-stimulated Cl(-) secretion was inhibited by 86%. The decline was linearly related to the cytosolic redox potential (1.8% inhibition/mV oxidation). Cystic fibrosis bronchial epithelial cells homozygous for DeltaF508 CFTR failed to secrete Cl(-) in response to pyocyanin or H(2)O(2), indicating that these oxidants specifically target the CFTR and not other Cl(-) conductances. Treatment with pyocyanin also decreased total cellular glutathione levels to 62% and cellular ATP levels to 46% after 24 h. We conclude that pyocyanin is a key factor that redox cycles in the cytosol, generates H(2)O(2), depletes glutathione and ATP, and impairs CFTR function in Pseudomonas-infected lungs.  相似文献   
58.
Mammalian secretory phospholipases A(2) (sPLA(2)) have been implicated in cellular eicosanoid biosynthesis but the mechanism of their cellular action remains unknown. To elucidate the spatiotemporal dynamics of sPLA(2) mobilization and determine the site of its lipolytic action, we performed time-lapse confocal microscopic imaging of fluorescently labeled sPLA(2) acting on human embryonic kidney (HEK) 293 cells the membranes of which are labeled with a fluorogenic phospholipid, N-((6-(2,4-dinitrophenyl)amino)hexanoyl)-1-hexadecanoyl-2-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-pentanoyl)-sn-glycero-3-phosphoethanolamine. The Western blotting analysis of HEK293 cells treated with exogenous sPLA(2)s showed that not only the affinity for heparan sulfate proteoglycan but also other factors, such as sPLA(2) hydrolysis products or cytokines, are necessary for the internalization of sPLA(2) into HEK293 cells. Live cell imaging showed that the hydrolysis of fluorogenic phospholipids incorporated into HEK293 cell membranes was synchronized with the spatiotemporal dynamics of sPLA(2) internalization, detectable initially at the plasma membrane and then at the perinuclear region. Also, immunocytostaining showed that human group V sPLA(2) induced the translocation of 5-lipoxygenase to the nuclear envelope at which they were co-localized. Together, these studies provide the first experimental evidence that the internalized sPLA(2) acts on the nuclear envelope to provide arachidonate for other enzymes involved in the eicosanoid biosynthesis.  相似文献   
59.
A study was conducted to determine the efficacy of β-mannanase supplementation to a diet based on corn and soya bean meal (SBM) on growth performance, nutrient digestibility, blood urea nitrogen (BUN), faecal coliforms and lactic acid bacteria, and noxious gas emission in growing pigs. A total of 140 pigs [(Landrace × Yorkshire) × Duroc; average body weight 25 ± 3 kg] were randomly allotted to a 2 × 2 factorial arrangement with dietary treatments consisting of hulled or dehulled SBM without or with supplementation of 400 U β-mannanase/kg. During the 6 weeks of experimental feeding, β-mannanase supplementation had no effect on body weight gain, feed intake and gain:feed (G:F) ratio. Compared with dehulled SBM, feeding hulled SBM caused an increased feed intake of pigs in the entire trial (p = 0.05). The G:F ratio was improved in pigs receiving dehulled SBM (p < 0.05). Dietary treatments did not influence the total tract digestibility of dry matter, nitrogen and gross energy. Enzyme supplementation reduced (p < 0.05) the population of faecal coliforms and tended to reduce the NH3 concentration after 24 h of fermentation in a closed box containing faecal slurry. Feeding hulled SBM tended to reduce NH3 emission on days 3 and 5 of fermentation. In conclusion, mannanase supplementation had no influence on growth performance and nutrient digestibility but showed a positive effect on reducing coliform population and tended to reduce NH3 emission. Dehulled SBM increased G:F ratio and hulled SBM tended to reduce NH3 emission.  相似文献   
60.

Background

GPi (Internal globus pallidus) DBS (deep brain stimulation) is recognized as a safe, reliable, reversible and adjustable treatment in patients with medically refractory dystonia.

Objectives

This report describes the long-term clinical outcome of 36 patients implanted with GPi DBS at the Neurosurgery Department of Seoul National University Hospital.

Methods

Nine patients with a known genetic cause, 12 patients with acquired dystonia, and 15 patients with isolated dystonia without a known genetic cause were included. When categorized by phenomenology, 29 patients had generalized, 5 patients had segmental, and 2 patients had multifocal dystonia. Patients were assessed preoperatively and at defined follow-up examinations postoperatively, using the Burke-Fahn-Marsden dystonia rating scale (BFMDRS) for movement and functional disability assessment. The mean follow-up duration was 47 months (range, 12–84)

Results

The mean movement scores significantly decreased from 44.88 points preoperatively to 26.45 points at 60-month follow up (N = 19, P = 0.006). The mean disability score was also decreased over time, from 11.54 points preoperatively to 8.26 points at 60-month follow up, despite no statistical significance (N = 19, P = 0.073). When analyzed the movement and disability improvement rates at 12-month follow up point, no significant difference was noted according to etiology, disease duration, age at surgery, age of onset, and phenomenology. However, the patients with DYT-1 dystonia and isolated dystonia without a known genetic cause showed marked improvement.

Conclusions

GPi DBS is a safe and efficient therapeutic method for treatment of dystonia patients to improve both movement and disability. However, this study has some limitations caused by the retrospective design with small sample size in a single-center.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号