首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14297篇
  免费   1147篇
  国内免费   40篇
  15484篇
  2023年   59篇
  2022年   197篇
  2021年   301篇
  2020年   201篇
  2019年   281篇
  2018年   412篇
  2017年   331篇
  2016年   526篇
  2015年   825篇
  2014年   932篇
  2013年   994篇
  2012年   1289篇
  2011年   1208篇
  2010年   834篇
  2009年   672篇
  2008年   910篇
  2007年   796篇
  2006年   689篇
  2005年   652篇
  2004年   591篇
  2003年   510篇
  2002年   467篇
  2001年   225篇
  2000年   229篇
  1999年   186篇
  1998年   98篇
  1997年   73篇
  1996年   47篇
  1995年   61篇
  1994年   54篇
  1993年   41篇
  1992年   64篇
  1991年   67篇
  1990年   67篇
  1989年   47篇
  1988年   40篇
  1987年   40篇
  1986年   33篇
  1985年   43篇
  1984年   32篇
  1983年   31篇
  1982年   20篇
  1981年   24篇
  1979年   25篇
  1975年   19篇
  1974年   21篇
  1973年   20篇
  1971年   25篇
  1970年   19篇
  1968年   22篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
111.
Integrated top-down bottom-up proteomics combined with on-line digestion has great potential to improve the characterization of protein isoforms in biological systems and is amendable to high throughput proteomics experiments. Bottom-up proteomics ultimately provides the peptide sequences derived from the tandem MS analyses of peptides after the proteome has been digested. Top-down proteomics conversely entails the MS analyses of intact proteins for more effective characterization of genetic variations and/or post-translational modifications. Herein, we describe recent efforts toward efficient integration of bottom-up and top-down LC-MS-based proteomics strategies. Since most proteomics separations utilize acidic conditions, we exploited the compatibility of pepsin (where the optimal digestion conditions are at low pH) for integration into bottom-up and top-down proteomics work flows. Pressure-enhanced pepsin digestions were successfully performed and characterized with several standard proteins in either an off-line mode using a Barocycler or an on-line mode using a modified high pressure LC system referred to as a fast on-line digestion system (FOLDS). FOLDS was tested using pepsin and a whole microbial proteome, and the results were compared against traditional trypsin digestions on the same platform. Additionally, FOLDS was integrated with a RePlay configuration to demonstrate an ultrarapid integrated bottom-up top-down proteomics strategy using a standard mixture of proteins and a monkey pox virus proteome.In-depth characterization and quantitation of protein isoforms, including post-translationally modified proteins, are challenging goals of contemporary proteomics. Traditionally, top-down (1, 2) and bottom-up (3, 4) proteomics have been two distinct analytical paths for liquid-based proteomics analysis. Top-down proteomics is the mass spectrometry (MS)-based characterization of intact proteins, whereas bottom-up proteomics requires a chemical or enzymatic proteolytic digestion of all proteins into peptides prior to MS analysis. Both strategies have their own strengths and challenges and can be thought of as complementary rather than competing analytical techniques.In a top-down proteomics approach, proteins are usually separated by one- or two-dimensional liquid chromatography (LC) and identified using high performance MS (5, 6). This approach is very attractive because it allows the identification of protein isoforms arising from various amino acid modifications, genetic variants (e.g. single nucleotide polymorphisms), mRNA splice variants, and multisite modifications (7) (e.g. specific histone modifications) as well as characterization of proteolytic processing events. However, there are several challenges that have limited the broad application of the approach. Typically, intact proteins are less soluble than their peptide complement, which effectively results in greater losses during various stages of sample handling (i.e. limited sensitivity). Similarly, proteins above ∼40–50 kDa in size are more difficult to ionize, detect, and dissociate in most high throughput MS work flows. Additionally, major challenges associated with MS data interpretation and sensitivity, especially for higher molecular mass proteins (>100 kDa) and highly hydrophobic proteins (e.g. integral membrane proteins), remain largely unsolved, thus limiting the applicability of top-down proteomics on a large scale.Bottom-up proteomics approaches have broad application because peptides are easier to separate and analyze via LC coupled with tandem mass spectrometry (MS/MS), offering a basis for more comprehensive protein identification. As this method relies on protein digestion (which produces multiple peptides for each protein), the sample complexity can become exceedingly large, requiring several dimensions of chromatographic separations (e.g. strong cation exchange and/or high pH reversed phase) prior to the final LC separation (typically reversed phase (RP)1 C18), which is oftentimes directly coupled with the mass spectrometer (3, 8). In general, the bottom-up analysis rarely achieves 100% sequence coverage of the original proteins, which can result in an incorrect/incomplete assessment of protein isoforms and combinatorial PTMs. Additionally, the digested peptides are not detected with uniform efficiency, which challenges and distorts protein quantification efforts.Because the data obtained from top-down and bottom-up work flows are complementary, several attempts have been made to integrate the two strategies (9, 10). Typically, these efforts have utilized extensive fractionation of the intact protein separation followed by bottom-up analysis of the collected fractions. Results so far have encouraged us to consider on-line digestion methods for integrating top-down and bottom-up proteomics in a higher throughput fashion. Such an on-line digestion approach would not only benefit in terms of higher sample throughput and improved overall sensitivity but would also allow a better correlation between the observed intact protein and its peptide digestion products, greatly aiding data analysis and protein characterization efforts.So far, however, none of the on-line integrated methods have proven robust enough for routine high throughput analyses. One of the reasons for this limited success relates to the choice of the proteolytic enzyme used for the bottom-up segment. Trypsin is by far the most widely used enzyme for proteome analyses because it is affordable (relative to other proteases), it has been well characterized for proteome research, and it offers a nice array of detectable peptides due to a fairly even distribution of lysines and arginines across most proteins. However, protein/peptide RPLC separations (optimal at low pH) are fundamentally incompatible with on-line trypsin digestion (optimal at pH ∼ 8) (11, 12). Therefore, on-line coupling of trypsin digestion and RPLC separations is fraught with technological challenges, and proposed solutions (12) have not proven to be robust enough for integration into demanding high throughput platforms.Our approach to this challenge was to investigate alternative proteases that may be more compatible with automated on-line digestion, peptide separation, and MS detection. Pepsin, which is acid-compatible (i.e. it acts in the stomach to initially aid in the digestion of food) (13), is a particularly promising candidate. This protease has previously been successfully used for the targeted analyses of protein complexes, hydrogen/deuterium exchange experiments (14, 15), and characterization of biopharmaceuticals (16, 17). Generally, pepsin preferentially cleaves the peptide bond located on the N-terminal side of hydrophobic amino acids, such as leucine and phenylalanine, although with less specificity than the preferential cleavage observed for trypsin at arginine and lysine. The compatibility of pepsin with typical LC-MS operation makes it an ideal choice for the development of novel approaches combining protein digestion, protein/peptide separation, and MS-based protein/peptide identification.To develop an automated system capable of simultaneously capturing top-down and bottom-up data, enzyme kinetics of the chosen protease must be extremely fast (because one cannot wait hours as is typical when performing off-line proteolysis). Another requirement is the use of immobilized enzyme or a low enough concentration of the enzyme such that autolysis products do not obscure the detection of substrate peptides. The latter was a concern when using pepsin because prior hydrogen/deuterium exchange experiments used enzyme:substrate ratios up to 1:2 (18, 19). To test whether or not such a large concentration of pepsin was necessary, we performed pepsin digestion at ratios of 1:20. Many alternative energy inputs into the system were considered for speeding up the digestion. For instance, it has been shown that an input of ultrasonic energy could accelerate the reaction rate of a typical trypsin digestion while using small amounts of a protease (20). Because ultrasonic energy results in an increase of temperature and microenvironments of high pressure, it has been hypothesized that the higher temperature was the component responsible for the enhanced enzyme activity (21). López-Ferrer et al. (22, 23), however, have demonstrated that application of higher pressure with incorporation of a Barocycler alone can make trypsin display faster enzyme kinetics. This phenomenon can easily be integrated with an LC separation (which already operates at elevated pressure) to enable an automatable ultrarapid on-line digestion LC-MS proteomics platform. Herein, we refer to this platform as the fast on-line digestion system (FOLDS) (23). Although FOLDS has been described before using trypsin, here the system is characterized with pepsin, and the results obtained are compared with results attainable with trypsin. Like trypsin, pepsin produced efficient protein digestion in just a few minutes when placed under pressure. Because of the natural maximal activity of pepsin at low pH, the FOLDS can be incorporated with a RePlay (Advion Biosciences, Ithaca, NY) system, and this powerful combination is what ultimately makes the integration of top-down and bottom-up proteomics analyses possible. The integrated analysis begins with a chromatographic separation of intact proteins. The separated proteins are then split into two streams. One stream proceeds directly to the mass spectrometer for MS and/or tandem MS analysis. The second stream is split into a long capillary where the chromatographic separation of the proteins is maintained, but their arrival to the mass spectrometer for detection is delayed. This is in essence the concept of RePlay (24, 25). Herein, we have taken the RePlay a step further by implementing our FOLDS technology into the second split delayed stream of proteins. While these delayed proteins travel down the long and narrow capillary, we exposed them to pepsin where, in combination with the pressure, the proteins are quickly and reproducibly digested. These peptide fragments are subsequently subjected to MS and/or tandem MS analysis. The FOLDS RePlay system allows the rapid and robust incorporation of the integrated top-down bottom-up proteomics work flow with the ability to not only identify proteins but also to sequence multisite/combinatorial PTMs because all detected peptides (from the FOLDS analysis) are confined to the original chromatographic peak of the protein they were derived from. The analysis of protein mixtures using this integrated strategy reduces the total amount of samples required to obtain both the top-down and bottom-up data, increases throughput, and improves protein sequence coverage.  相似文献   
112.
The purpose of this study was to evaluate the diagnostic value of magnetic resonance imaging (MRI) and assess the correlation between the volume of the ischemic lesion and neurobehavioral status during the subacute stage of ischemic stroke. Ischemic stroke was induced in 6 healthy laboratory beagles through permanent occlusion of the middle cerebral artery (MCAO). T2-weighted and fluid-attenuated inversion recovery (FLAIR) imaging, diffusion-weighted imaging (DWI), measurement of the apparent diffusion coefficient (ADC) ratio, and neurobehavioral evaluation were performed 3 times serially by using a 1.5-T MR system: before and 3 and 10 d after MCAO. Ischemic lesions demonstrated T2 hyperintensity, FLAIR hyperintensity, and DWI hyperintensity. The ADC ratio was decreased initially but then was increased at 10 d after MCAO. Ischemic lesion volumes on T2-weighted and FLAIR imaging were not significantly different from those on DWI. The lesion volume and neurobehavioral score showed strong correlation. Our results suggest that conventional MRI may be a reliable diagnostic tool during the subacute stage of canine ischemic stroke.Abbreviations: ADC, apparent diffusion coefficient; DWI, diffusion-weighted imaging; FLAIR, fluid-attenuated inversion recovery; MCAO, middle cerebral artery occlusion; MRI, magnetic resonance imaging; PWI, perfusion-weighted imagingIn human medicine, stroke is a leading cause of adult mortality and neurologic disability worldwide.1 Strokes previously were thought to be uncommon in small animals, but the true prevalence is unknown.4 These events are now recognized more frequently in dogs because of increased use of magnetic resonance imaging (MRI).5,14,17Because the infusion of thrombolytic agents, such as urokinase or tissue plasminogen activator, within 3 to 6 h of the onset symptoms is effective in restoring blood flow and improving stroke outcome in humans,19 the detection of early ischemic changes is now thought to be necessary to improve patient outcome. Computed tomography and conventional MRI are not sufficiently sensitive to predict the presence and extent of ischemic damage during the acute stage after a stroke.12,20 Therefore several MRI sequences, such as fluid-attenuated inversion recovery (FLAIR), diffusion-weighted imaging (DWI), perfusion-weighted imaging (PWI), and MR angiography, have been developed for early diagnosis and subsequent follow-up of ischemic stroke.3 High-field magnetic strengths (at least 1.5 T) are necessary to perform these sequences.In contrast to the situation in humans, ischemic stroke in many dogs is diagnosed during the subacute stage—24 h to 6 wk after the vascular insult—due to the time lag between the onset of clinical signs to referral and to the lack of standard diagnostic protocols for ischemic stroke in dogs. In most reports of strokes in dogs, the median interval between the onset of neurologic dysfunction and performance of an MRI was more than 2 d.5,14,17 Whereas DWI has marked sensitivity to very early ischemic changes in the brain, T2-weighted and FLAIR images gradually become more hyperintense later (that is, during the first 24 h after the insult).3 Therefore, hyperintensity on T2-weighted and FLAIR images is believed to be representative of mature lesions.15 In light of these findings, we hypothesized that conventional MR sequences, such as T2-weighted and FLAIR imaging as well as DWI would be used for the diagnosis of the subacute stage of ischemic stroke in dogs.The purpose of this study was to evaluate the diagnostic value of MRI and assess the correlation between the volume of ischemic lesions and neurobehavioral status during the subacute stage of ischemic stroke in dogs. We therefore investigated the lesion volume of T2-weighted and FLAIR images compared with that on DWI images. Furthermore, we assessed the relationship between the apparent diffusion coefficient (ADC) of the ischemic lesions and the neurobehavioral status of the dogs.  相似文献   
113.
Stomata usually open when leaves are transferred from darkness to light. However, reverse-phase stomatal opening in succulent plants has been known. CAM plants such as cacti and Opuntia ficus–indica achieve their high water use efficiency by opening their stomata during the cool, desert nights and closing them during the hot, dry days. Signal transduction pathway for stomatal opening by blue light photoreceptors including phototropins and the carotenoid pigment zeaxanthin has been suggested. Blue light regulated signal transduction pathway on stomatal opening could not be applied to CAM plants, but the most possible theory for a nocturnal response of stomata in CAM plants is photoperiodic circadian rhythm.  相似文献   
114.
115.
IL-35 subunit EBI3 is up-regulated in pulmonary fibrosis tissues. In this study, we investigated the pathological role of EBI3 in pulmonary fibrosis and dissected the underlying molecular mechanism. Bleomycin-induced pulmonary fibrosis mouse model was established, and samples were performed gene expression analyses through RNAseq, qRT-PCR and Western blot. Wild type and EBI3 knockout mice were exposed to bleomycin to investigate the pathological role of IL-35, via lung function and gene expression analyses. Primary lung epithelial cells were used to dissect the regulatory mechanism of EBI3 on STAT1/STAT4 and STAT3. IL-35 was elevated in both human and mouse with pulmonary fibrosis. EBI3 knockdown aggravated the symptoms of pulmonary fibrosis in mice. EBI3 deficiency enhanced the expressions of fibrotic and extracellular matrix-associated genes. Mechanistically, IL-35 activated STAT1 and STAT4, which in turn suppressed DNA enrichment of STAT3 and inhibited the fibrosis process. IL-35 might be one of the potential therapeutic targets for bleomycin-induced pulmonary fibrosis.  相似文献   
116.
An all solid state potentiometric immunosensor (ASPI) has been developed to study the activation process of neuronal nitric oxide synthase (nNOS), the enzyme involved in the synthesis of nitric oxide generated under physiological conditions. At first, an all solid state H+-selective ISE was fabricated with the carboxylated poly(vinyl chloride) (PVC-COOH) film containing H+ ionophore, antibody was then immobilized on the polymer layer. The immunocomplex formation was detected by monitoring pH change due to interaction between urease labeled secondary antibody and antigen. Experimental parameters such as the amount of phosphorylated nNOS immobilized on the electrode surface and pH responses due to the antibody–antigen reaction were studied in detail. The calibration plot of the potentiometric potential vs. phosphorylated nNOS concentration exhibited a linear relationship in the range of 3.4–340.0 μg/ml. The calibration sensitivity of the phosphorylated nNOS immunosensor was −0.073 ± 0.002 mV/μg ml−1. The detection limit of nNOS was determined to be 0.2 μg/ml based on five-time measurements (95% confidence level, k = 3, n = 5). The reliability of the immunosensor was examined with rat brain tissues as well as neuronal cells, and the results shown were good, implying a promising approach for a novel electrochemical immunosensor platform with potential applications to clinical diagnosis.  相似文献   
117.
Similarities between age-related changes in the canine and human brain have resulted in the general acceptance of the canine brain as a model of human brain aging. The hippocampus is essentially required for intact cognitive ability and appears to be particularly vulnerable to the aging process. We observed changes in ionized calcium-binding adapter molecule 1 (Iba-1, a microglial marker) immunoreactivity and protein levels in the hippocampal dentate gyrus and CA1 region of adult (2-3 years) and aged (10-12 years) dogs. We also observed the interferon-gamma (IFN-gamma), a pro-inflammatory cytokine, protein levels in these groups. In the dentate gyrus and CA1 region of the adult dog, Iba-1 immunoreactive microglia were well distributed and their processes were highly ramified. However, in the aged dog, the processes of Iba-1 immunoreactive microglia were hypertrophied in the dentate gyrus. Moreover, Iba-1 protein level in the dentate gyrus in the aged dog was higher than in the adult dog. IFN-gamma expression was increased in the dentate gyrus homogenates of aged dogs than adult dogs. In addition, we found that some neurons were positive to Fluoro-Jade B (a marker for neuronal degeneration) in the dentate polymorphic layer, but not in the hippocampal CA1 region in the aged dog. These results suggest that Iba-1 immunoreactive microglia are hypertrophied in the dentate gyrus in the aged dog.  相似文献   
118.
Kaposi's sarcoma is an inflammatory cytokine-mediated angioproliferative disease which is triggered by infection by Kaposi's sarcoma-associated herpesvirus (KSHV). KSHV contains an open reading frame, K14, that has significant homology with cellular OX2, designated viral OX2 (vOX2). In this report, we demonstrate that vOX2 encodes a glycosylated cell surface protein with an apparent molecular mass of 55 kDa. Purified glycosylated vOX2 protein dramatically stimulated primary monocytes, macrophages, and dendritic cells to produce the inflammatory cytokines interleukin 1beta (IL-1beta), IL-6, monocyte chemoattractant protein 1, and TNF-alpha. Furthermore, expression of vOX2 on B lymphocytes stimulated monocytes to produce inflammatory cytokines in mixed culture. These results demonstrate that like its cellular counterpart, vOX2 targets myeloid-lineage cells, but unlike cellular OX2, which delivers a restrictive signal, KSHV vOX2 provides an activating signal, resulting in the production of inflammatory cytokines. Thus, this is a novel viral strategy where KSHV has acquired the cellular OX2 gene to induce inflammatory cytokine production, which potentially promotes the cytokine-mediated angiogenic proliferation of KSHV-infected cells.  相似文献   
119.
Pyocyanin (N-methyl-1-hydroxyphenazine), a redox-active virulence factor produced by the human pathogen Pseudomonas aeruginosa, is known to compromise mucociliary clearance. Exposure of human bronchial epithelial cells to pyocyanin increased the rate of cellular release of H(2)O(2) threefold above the endogenous H(2)O(2) production. Real-time measurements of the redox potential of the cytosolic compartment using the redox sensor roGFP1 showed that pyocyanin (100 microM) oxidized the cytosol from a resting value of -318+/-5 mV by 48.0+/-4.6 mV within 2 h; a comparable oxidation was induced by 100 microM H(2)O(2). Whereas resting Cl(-) secretion was slightly activated by pyocyanin (to 10% of maximal currents), forskolin-stimulated Cl(-) secretion was inhibited by 86%. The decline was linearly related to the cytosolic redox potential (1.8% inhibition/mV oxidation). Cystic fibrosis bronchial epithelial cells homozygous for DeltaF508 CFTR failed to secrete Cl(-) in response to pyocyanin or H(2)O(2), indicating that these oxidants specifically target the CFTR and not other Cl(-) conductances. Treatment with pyocyanin also decreased total cellular glutathione levels to 62% and cellular ATP levels to 46% after 24 h. We conclude that pyocyanin is a key factor that redox cycles in the cytosol, generates H(2)O(2), depletes glutathione and ATP, and impairs CFTR function in Pseudomonas-infected lungs.  相似文献   
120.
Mammalian secretory phospholipases A(2) (sPLA(2)) have been implicated in cellular eicosanoid biosynthesis but the mechanism of their cellular action remains unknown. To elucidate the spatiotemporal dynamics of sPLA(2) mobilization and determine the site of its lipolytic action, we performed time-lapse confocal microscopic imaging of fluorescently labeled sPLA(2) acting on human embryonic kidney (HEK) 293 cells the membranes of which are labeled with a fluorogenic phospholipid, N-((6-(2,4-dinitrophenyl)amino)hexanoyl)-1-hexadecanoyl-2-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-pentanoyl)-sn-glycero-3-phosphoethanolamine. The Western blotting analysis of HEK293 cells treated with exogenous sPLA(2)s showed that not only the affinity for heparan sulfate proteoglycan but also other factors, such as sPLA(2) hydrolysis products or cytokines, are necessary for the internalization of sPLA(2) into HEK293 cells. Live cell imaging showed that the hydrolysis of fluorogenic phospholipids incorporated into HEK293 cell membranes was synchronized with the spatiotemporal dynamics of sPLA(2) internalization, detectable initially at the plasma membrane and then at the perinuclear region. Also, immunocytostaining showed that human group V sPLA(2) induced the translocation of 5-lipoxygenase to the nuclear envelope at which they were co-localized. Together, these studies provide the first experimental evidence that the internalized sPLA(2) acts on the nuclear envelope to provide arachidonate for other enzymes involved in the eicosanoid biosynthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号