首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6812篇
  免费   497篇
  国内免费   38篇
  7347篇
  2024年   7篇
  2023年   41篇
  2022年   109篇
  2021年   149篇
  2020年   103篇
  2019年   171篇
  2018年   194篇
  2017年   160篇
  2016年   272篇
  2015年   393篇
  2014年   438篇
  2013年   503篇
  2012年   636篇
  2011年   595篇
  2010年   441篇
  2009年   341篇
  2008年   459篇
  2007年   445篇
  2006年   323篇
  2005年   302篇
  2004年   281篇
  2003年   235篇
  2002年   229篇
  2001年   61篇
  2000年   75篇
  1999年   77篇
  1998年   37篇
  1997年   37篇
  1996年   21篇
  1995年   21篇
  1994年   17篇
  1993年   14篇
  1992年   19篇
  1991年   22篇
  1990年   8篇
  1989年   9篇
  1988年   9篇
  1987年   7篇
  1986年   7篇
  1985年   7篇
  1984年   4篇
  1983年   5篇
  1982年   4篇
  1979年   4篇
  1976年   8篇
  1975年   7篇
  1970年   3篇
  1969年   4篇
  1968年   5篇
  1967年   6篇
排序方式: 共有7347条查询结果,搜索用时 12 毫秒
101.
IL-35 subunit EBI3 is up-regulated in pulmonary fibrosis tissues. In this study, we investigated the pathological role of EBI3 in pulmonary fibrosis and dissected the underlying molecular mechanism. Bleomycin-induced pulmonary fibrosis mouse model was established, and samples were performed gene expression analyses through RNAseq, qRT-PCR and Western blot. Wild type and EBI3 knockout mice were exposed to bleomycin to investigate the pathological role of IL-35, via lung function and gene expression analyses. Primary lung epithelial cells were used to dissect the regulatory mechanism of EBI3 on STAT1/STAT4 and STAT3. IL-35 was elevated in both human and mouse with pulmonary fibrosis. EBI3 knockdown aggravated the symptoms of pulmonary fibrosis in mice. EBI3 deficiency enhanced the expressions of fibrotic and extracellular matrix-associated genes. Mechanistically, IL-35 activated STAT1 and STAT4, which in turn suppressed DNA enrichment of STAT3 and inhibited the fibrosis process. IL-35 might be one of the potential therapeutic targets for bleomycin-induced pulmonary fibrosis.  相似文献   
102.
103.
BackgroundWe investigated the relationship between genetic alterations and 18F-FDG PET/CT findings in head and neck squamous cell carcinoma (HNSC).MethodsUsing mRNA-sequences of HNSC samples (480 patients) from the Cancer Genome Atlas (TCGA) portal, gene coexpression networks were constructed via a weighted correlation network analysis (WGCNA) algorithm, and their association with the tumor-to-blood signal ratio on 18F-FDG PET/CT data (21 patients) was explored. An elastic-net regression model was developed to estimate the PET tumor-to-blood ratio from the gene networks and to derive an FDG signature score (FDGSS). The FDGSS was evaluated with regard to clinical variables and general mutational profiles, as well as alterations to oncogenic signaling pathways.FindingsThe FDGSS values differed across clinical stages (p = 0.027), HPV-status (p< 0.001), and molecular subtypes of HNSC (p< 0.001). Multivariate Cox regression demonstrated that FDGSS was an independent predictor for overall (p = 0.019) and progression-free survival (p = 0.024). FDGSS positively correlated with total mutation rate (p = 0.016), aneuploidy (p < 0.001), and somatic copy number alteration scores (p < 0.001). CDKN2A in the cell cycle pathway (q = 0.014) and the TP53 gene in the TP53 pathway (q = 0.005) showed significant differences between high and low FDGSS patients.ConclusionFDGSS based on the gene coexpression network was associated with the mutational landscape of HNSC. 18F-FDG PET/CT is therefore a valuable tool for the in vivo imaging of these cancers, being able to visualize the glucose metabolism of the tumor and allow inferences to be made on the underlying genetic alterations in the tumor.  相似文献   
104.
105.
The cell cycle plays an important role in the development and adaptation of multicellular organisms; specifically, it allows them to optimally adjust their architecture in response to environmental changes. Kip-related proteins (KRPs) are important negative regulators of cyclin-dependent kinases (CDKs), which positively control the cell cycle during plant development. The Arabidopsis genome possesses seven KRP genes with low sequence similarity and distinct expression patterns; however, why Arabidopsis needs seven KRP genes and how these genes function in cell cycle regulation are unknown. Here, we focused on the characterization of KRP3, which was found to have unique functions in the shoot apical meristem (SAM) and leaves. KRP3 protein was localized to the SAM, including the ground meristem and vascular tissues in the ground part of the SAM and cotyledons. In addition, KRP3 protein was stabilized when treated with MG132, an inhibitor of the 26S proteasome, indicating that the protein may be regulated by 26S proteasome-mediated protein degradation. KRP3-overexpressing (KRP3 OE) transgenic plants showed reduced organ size, serrated leaves, and reduced fertility. Interestingly, the KRP3 OE transgenic plants showed a significant reduction in the size of the SAM with alterations in cell arrangement. In addition, compared to the wild type, the KRP3 OE transgenic plants had a higher DNA ploidy level in the SAM and leaves. Taken together, our data suggest that KRP3 plays important regulatory roles in the cell cycle and endoreduplication in the SAM and leaves.  相似文献   
106.
107.
The required for Mla12 resistance (RAR1) protein is essential for the plant immune response. In rice, a model monocot species, the function of Oryza sativa RAR1 (OsRAR1) has been little explored. In our current study, we characterized the response of a rice osrar1 T-DNA insertion mutant to infection by Magnaporthe oryzae, the causal agent of rice blast disease. osrar1 mutants displayed reduced resistance compared with wild type rice when inoculated with the normally virulent M. oryzae isolate PO6-6, indicating that OsRAR1 is required for an immune response to this pathogen. We also investigated the function of OsRAR1 in the resistance mechanism mediated by the immune receptor genes Pib and Pi5 that encode nucleotide binding-leucine rich repeat (NB-LRR) proteins. We inoculated progeny from Pib/osrar1 and Pi5/osrar1 heterozygous plants with the avirulent M. oryzae isolates, race 007 and PO6-6, respectively. We found that only Pib-mediated resistance was compromised by the osrar1 mutation and that the introduction of the OsRAR1 cDNA into Pib/osrar1 rescued Pib-mediated resistance. These results indicate that OsRAR1 is required for Pib-mediated resistance but not Pi5-mediated resistance to M. oryzae.  相似文献   
108.
To investigate the biomechanical effect of collars, finite element analyses are carried out through two hip joints that are implanted using collared and collarless stems, respectively, and an intact hip joint model. For the analyses, the sacrum, coxal bone, and the cancellous and cortical bones of a femur are modelled using finite elements based on X-ray computed tomographic images taken from a 27-year-old woman. From the results, it is found that a collar with perfect calcar contact prevents stem subsidence and decreases the proximal–lateral gap and the lateral stem tilting. Therefore, it can impart reasonable biomechanical stability for total hip arthroplasty. However, its low load transmission ability and increased stem tilting effect due to the imperfect contact between the collar and the calcar are found to be serious problems that need to be solved. Results of clinical follow-up are presented for supporting the computational results.  相似文献   
109.
We investigated whether healthy young (age ? 40) and elderly (age ? 65) people infected with cytomegalovirus (CMV) had similar levels of CD8+ T cell cytokine production and proliferation in response to an immunodominant CMV pp65 peptide pool given the role of CD8+ T cells in controlling viral infection and the association of CMV with immunosenescence. Plus, we determined the effects of aging and CMV-infectious status on plasma levels of IL-27, an innate immune cytokine with pro- and anti-inflammatory properties, as well as on its relationship to IFN-γ in that IL-27 can promote the production of IFN-γ. The results of our study show that young and elderly people had similar levels of CD8+ T cell proliferation, and IFN-γ and TNF-α production in response to CMV pp65 peptides. Plasma levels of IL-27 were similar between the two groups although CMV-infected young and elderly people had a trend toward increased levels of IL-27. Regardless of aging and CMV-infectious status, plasma levels of IL-27 correlated highly with plasma levels of IFN-γ. These findings suggest the maintenance of CMV pp65-specific CD8+ T cell proliferation and cytokine production with aging as well as the sustaining of circulatory IL-27 levels and its biological link to IFN-γ in young and elderly people irrespective of CMV infection.  相似文献   
110.
Long awns are important for seed dispersal in wild rice (Oryza rufipogon), but are absent in cultivated rice (Oryza sativa). The genetic mechanism involved in loss-of-awn in cultivated rice remains unknown. We report here the molecular cloning of a major quantitative trait locus, An-1, which regulates long awn formation in O. rufipogon. An-1 encodes a basic helix-loop-helix protein, which regulates cell division. The nearly-isogenic line (NIL-An-1) carrying a wild allele An-1 in the genetic background of the awnless indica Guangluai4 produces long awns and longer grains, but significantly fewer grains per panicle compared with Guangluai4. Transgenic studies confirmed that An-1 positively regulates awn elongation, but negatively regulates grain number per panicle. Genetic variations in the An-1 locus were found to be associated with awn loss in cultivated rice. Population genetic analysis of wild and cultivated rice showed a significant reduction in nucleotide diversity of the An-1 locus in rice cultivars, suggesting that the An-1 locus was a major target for artificial selection. Thus, we propose that awn loss was favored and strongly selected by humans, as genetic variations at the An-1 locus that cause awn loss would increase grain numbers and subsequently improve grain yield in cultivated rice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号