首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7045篇
  免费   624篇
  国内免费   44篇
  7713篇
  2023年   36篇
  2022年   85篇
  2021年   135篇
  2020年   94篇
  2019年   152篇
  2018年   178篇
  2017年   152篇
  2016年   240篇
  2015年   367篇
  2014年   409篇
  2013年   496篇
  2012年   573篇
  2011年   565篇
  2010年   414篇
  2009年   316篇
  2008年   432篇
  2007年   405篇
  2006年   348篇
  2005年   327篇
  2004年   314篇
  2003年   289篇
  2002年   306篇
  2001年   62篇
  2000年   65篇
  1999年   79篇
  1998年   60篇
  1997年   57篇
  1996年   41篇
  1995年   39篇
  1994年   33篇
  1993年   30篇
  1992年   29篇
  1991年   36篇
  1990年   19篇
  1989年   28篇
  1988年   36篇
  1987年   30篇
  1986年   27篇
  1985年   20篇
  1984年   20篇
  1983年   20篇
  1982年   29篇
  1981年   32篇
  1980年   31篇
  1979年   14篇
  1978年   27篇
  1977年   16篇
  1976年   22篇
  1974年   17篇
  1973年   16篇
排序方式: 共有7713条查询结果,搜索用时 0 毫秒
41.
The Mre11–Rad50–Nbs1 (MRN) complex plays important roles in sensing DNA damage, as well as in resecting and tethering DNA ends, and thus participates in double-strand break repair. An earlier structure of Mre11 bound to a short duplex DNA molecule suggested that each Mre11 in a dimer recognizes one DNA duplex to bridge two DNA ends at a short distance. Here, we provide an alternative DNA recognition model based on the structures of Methanococcus jannaschii Mre11 (MjMre11) bound to longer DNA molecules, which may more accurately reflect a broken chromosome. An extended stretch of B-form DNA asymmetrically runs across the whole dimer, with each end of this DNA molecule being recognized by an individual Mre11 monomer. DNA binding induces rigid-body rotation of the Mre11 dimer, which could facilitate melting of the DNA end and its juxtaposition to an active site of Mre11. The identified Mre11 interface binding DNA duplex ends is structurally conserved and shown to functionally contribute to efficient resection, non-homologous end joining, and tolerance to DNA-damaging agents when other resection enzymes are absent. Together, the structural, biochemical, and genetic findings presented here offer new insights into how Mre11 recognizes damaged DNA and facilitates DNA repair.  相似文献   
42.

Objectives

Mid-urethral sling (MUS) surgery for the treatment of urinary incontinence has been widespread since the introduction of tension-free vaginal tape in the mid-1990s. The majority of studies with short-term follow-up <2 years found no differences in the surgical outcomes according to body mass index (BMI). However, considering the chronic influence of obesity on pelvic floor musculature, it is cautiously speculated that higher BMI could increase stress on pelvic floor and sub-urethral tape, possibly decreasing the long-term success rate in the obese population. We aimed to compare the long-term effects of BMI on the outcomes of MUS between women with retropubic and transobturator approaches.

Methods

We performed a retrospective analysis on 243 consecutive women who received MUS and were followed up for ≥36 months. The influence of BMI on the success rates was separately estimated and the factors for treatment failure were examined using logistic regression in either approach.

Results

The mean follow-up was 58.4 months, and 30.5% were normal weight, 51.0% overweight, and 18.5% obese. Patients received either the retropubic (30.5%) or transobturator (69.5%) approach. The success rates (%) under the transobturator approach differed according to the BMI groups (94.3, 88.6, and 78.6, respectively; P = 0.037) while those under the retropubic approach were not different according to the BMI groups. However, in multivariate models, only the presence of preoperative mixed urinary incontinence (MUI) was proven to be the risk factor for treatment failure in the transobturator approach (OR 6.39, P = 0.003). The percent of subjects with MUI was higher in obese women than in non-obese women with the transobturator approach.

Conclusions

BMI was not independently associated with failures in either approach. Higher success rates in women with lower BMI in the transobturator approach were attributed to the lower percent of preoperative MUI in those with lower BMI.  相似文献   
43.
We have previously reported that Ahnak-mediated TGFβ signaling leads to down-regulation of c-Myc expression. Here, we show that inhibition of Ahnak can promote generation of induced pluripotent stem cells (iPSC) via up-regulation of endogenous c-Myc. Consistent with the c-Myc inhibitory role of Ahnak, mouse embryonic fibroblasts from Ahnak-deficient mouse (Ahnak−/− MEF) show an increased level of c-Myc expression compared with wild type MEF. Generation of iPSC with just three of the four Yamanaka factors, Oct4, Sox2, and Klf4 (hereafter 3F), was significantly enhanced in Ahnak−/− MEF. Similar results were obtained when Ahnak-specific shRNA was applied to wild type MEF. Of note, expressionof Ahnak was significantly induced during the formation of embryoid bodies from embryonic stem cells, suggesting that Ahnak-mediated c-Myc inhibition is involved in embryoid body formation and the initial differentiation of pluripotent stem cells. The iPSC from 3F-infected Ahnak−/− MEF cells (Ahnak−/−-iPSC-3F) showed expression of all stem cell markers examined and the capability to form three primary germ layers. Moreover, injection of Ahnak−/−-iPSC-3F into athymic nude mice led to development of teratoma containing tissues from all three primary germ layers, indicating that iPSC from Ahnak−/− MEF are bona fide pluripotent stem cells. Taken together, these data provide evidence for a new role for Ahnak in cell fate determination during development and suggest that manipulation of Ahnak and the associated signaling pathway may provide a means to regulate iPSC generation.  相似文献   
44.
The 2a (polymerase) protein of cucumber mosaic virus (CMV) was shown to be phosphorylated both in vivo and in vitro. In vitro assays using 2a protein mutants and tobacco protein kinases showed that the 2a protein has at least three phosphorylation sites, one of which is located within the N-terminal 126 amino acid region. This region is essential and sufficient for interaction with the CMV 1a protein. When phosphorylated in vitro, the 2a protein N-terminal region failed to interact with the 1a protein. Since the 1a-2a interaction is essential for the replication of CMV, this suggests that phosphorylation of the N-terminal region of the 2a protein negatively modulates the interaction in vivo, and may have a regulatory role acting directly in viral infection.  相似文献   
45.
Abstract Observations of the large earth bumblebee, Bombus terrestris (L.), in native vegetation were collated to determine the extent to which this exotic species has invaded Tasmanian native vegetation during the first 9 years after its introduction. The range of B. terrestris now encompasses all of Tasmania's major vegetation types, altitudes from sea level to 1260m a.s.L, and the entire breadth of annual precipitation in the state from more than 3200 mm to less than 600 mm. Observations of workers carrying pollen, together with the presence of large numbers of bumblebees at many localities across this range indicate that colonies are frequently established in native vegetation. Evidence that colonies are often successful was obtained from repeated observations of the species during more than 1 year at particular sites. Unequivocal evidence of colonies was obtained from six National Parks, including four of the five in the Tasmanian Wilderness World Heritage Area (WHA). Indeed, the species has been present in the WHA for at least as long as it has in the city of Hobart, where it was first recorded. In southwestern Tasmania, evidence of colonies was obtained up to 40km from gardens, 61 km from small towns and 93 km from large towns. Hence, contrary to previous suggestions, the species is established in the most remote parts of Tasmania and is not dependent on introduced garden plants. Given their strong record of invasion, it is likely that B. terrestris will form feral populations on the mainland of Australia and in many other parts of the world if introduced. Because of their likely negative impacts on native animals and plants, and potential to enhance seed production in weeds, the spread of bumblebees should be avoided.  相似文献   
46.
Galphah (transglutaminase type II; tissue transglutaminase) is a bifunctional enzyme with transglutaminase (TGase) and guanosine triphosphatase (GTPase) activities. The GTPase function of Galphah is involved in hormonal signaling and cell growth while the TGase function plays an important role in apoptosis and in cross-linking extracellular and intracellular proteins. To analyze the regulation of these dual enzymatic activities we examined their calcium-dependence and thermal stability in enzymes from several cardiac sources (mouse heart, and normal, ischemic and dilated cardiomyopathic human hearts). The GTP binding activity of Galphah was markedly inhibited by Ca2+ whereas the TGase activity was strongly stimulated, suggesting that Ca2+ acts as a regulator, switching Galphah from a GTPase to a TGase. The TGase function of Galphah of both mouse and human hearts was more thermostable in the presence of Ca2+.  相似文献   
47.
The artificial gene coding for anticoagulant hirudin was placed under the control of theGAL10 promoter and expressed in the galactokinase-deficient strain (Δgal1) ofSaccharomyces cereivisiae, which uses galactose only as a gratuitous inducer in order to avoid its consumption. For efficient production of recombinant hirudin, a carbon source other than galactose should be provided in the medium to support growth of the Δgal1 strain. Here we demonstrate the successful use of glucose in the fed-batch fermentation of the Δgal1 strain to achieve efficient production of recombinant hirudin, with a yield of up to 400 mg hirudin/L.  相似文献   
48.
The desert tortoise, Gopherus agassizii, is a threatened species native to the North American desert southwest and is recognized as having distinct Mojave and Sonoran populations. We identified six polymorphic microsatellite loci in the desert tortoise. All six loci were polymorphic in Sonoran samples. Five of the loci were variable in Mojave samples with varying degrees of amplification success. Two of the loci exhibited low allelic variation (2–3 alleles) while four were highly variable (8–27 alleles).  相似文献   
49.
Neuroinflammation has been known to play a critical role in the pathogenesis of Alzheimer's disease (AD) through amyloidogenesis. In a previous study, we found that systemic inflammation by intraperitoneal (ip) injection of lipopolysaccharide (LPS) induces neuroinflammation and triggers memory impairment. In this present study, we investigated the inhibitory effects of epigallocatechin-3-gallate (EGCG) on the systemic inflammation-induced neuroinflammation and amyloidogenesis as well as memory impairment. ICR mice were orally administered with EGCG (1.5 and 3 mg/kg) for 3 weeks, and then the mice were treated by ip injection of LPS (250 μg/kg) for 7 days. We found that treatment of LPS induced memory-deficiency-like behavior and that EGCG treatment prevented LPS-induced memory impairment and apoptotic neuronal cell death. EGCG also suppressed LPS-induced increase of the amyloid beta-peptide level and the expression of the amyloid precursor protein (APP), β-site APP cleaving enzyme 1 and its product C99. In addition, we found that EGCG prevented LPS-induced activation of astrocytes and elevation of cytokines including tumor necrosis factor-α, interleukin (IL)-1β, macrophage colony-stimulating factor, soluble intercellular adhesion molecule-1 and IL-16, and the increase of inflammatory proteins, such as inducible nitric oxide synthase and cyclooxygenase-2, which are known factors responsible for not only activation of astrocytes but also amyloidogenesis. In the cultured astrocytes, EGCG also inhibited LPS-induced cytokine release and amyloidogenesis. Thus, this study shows that EGCG prevents memory impairment as well as amyloidogenesis via inhibition of neuroinflammatory-related cytokines released from astrocytes and suggests that EGCG might be a useful intervention for neuroinflammation-associated AD.  相似文献   
50.
The list of factors that participate in the DNA damage response to maintain genomic stability has expanded significantly to include a role for proteins involved in RNA processing. Here, we provide evidence that the RNA-binding protein fused in sarcoma/translocated in liposarcoma (FUS) is a novel component of the DNA damage response. We demonstrate that FUS is rapidly recruited to sites of laser-induced DNA double-strand breaks (DSBs) in a manner that requires poly(ADP-ribose) (PAR) polymerase activity, but is independent of ataxia-telangiectasia mutated kinase function. FUS recruitment is mediated by the arginine/glycine-rich domains, which interact directly with PAR. In addition, we identify a role for the prion-like domain in promoting accumulation of FUS at sites of DNA damage. Finally, depletion of FUS diminished DSB repair through both homologous recombination and nonhomologous end-joining, implicating FUS as an upstream participant in both pathways. These results identify FUS as a new factor in the immediate response to DSBs that functions downstream of PAR polymerase to preserve genomic integrity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号