首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   763篇
  免费   134篇
  897篇
  2021年   13篇
  2018年   8篇
  2017年   9篇
  2016年   14篇
  2015年   21篇
  2014年   25篇
  2013年   26篇
  2012年   31篇
  2011年   38篇
  2010年   16篇
  2009年   20篇
  2008年   36篇
  2007年   37篇
  2006年   47篇
  2005年   31篇
  2004年   31篇
  2003年   38篇
  2002年   34篇
  2001年   15篇
  2000年   18篇
  1999年   14篇
  1998年   6篇
  1996年   10篇
  1995年   11篇
  1993年   8篇
  1992年   19篇
  1991年   14篇
  1990年   14篇
  1989年   16篇
  1988年   17篇
  1987年   10篇
  1986年   12篇
  1985年   9篇
  1984年   15篇
  1982年   7篇
  1981年   7篇
  1979年   9篇
  1978年   10篇
  1977年   12篇
  1976年   5篇
  1975年   9篇
  1974年   12篇
  1973年   9篇
  1972年   12篇
  1971年   5篇
  1968年   12篇
  1967年   5篇
  1966年   5篇
  1963年   5篇
  1960年   6篇
排序方式: 共有897条查询结果,搜索用时 0 毫秒
11.
Summary The 10-kb chromosomal fragment of Streptococus pneumoniae cloned in pLS80 contains the sul-d allele of the pneumococcal gene for dihydropteroate synthase. As a single copy in the chromosome this allele confers resistance to sulfanilamide at 0.2 mg/ml; in the multicopy plasmid it confers resistance to 2.0 mg/ml. The sul-d mutation was mapped by restriction analysis to a 0.4-kb region. By the mechanism of chromosomal facilitation, in which the chromosome restores information to an entering plasmid fragment, a BamHI fragment missing the sul-d region of pLS80 established the full-sized plasmid, but with the sul-s allele of the recipient chromosome.A spontaneous deletion beginning 1.5 kb to the right of the sul-d mutation prevented gene function, possibly by removing a promoter. This region could be restored by chromosomal facilitation and be demonstrated in the plasmid by selection for sulfonamide resistance. Under selection for a vector marker, tetracycline resistance, only the deleted plasmid was detectable, apparently as a result of plasmid segregation and the advantageous growth rates of cells with smaller plasmids. When such cells were selected for sulfonamide resistance, the deleted region returned to the plasmid, presumably by equilibration between the chromosome and the plasmid pool, to give a low frequency (10-3) of cells resistant to sulfanilamide at 2.0 mg/ml. Models for the mechanisms of chromosomal facilitation and equilibration are proposed.Several derivatives of pLS80 could be transferred to Bacillus subtilis, where they conferred resistance to sulfanil-amide at 2 mg/ml, thereby demonstrating cross-species expression of the pneumococcal gene. Transfer of the plasmids to B. subtilis gave rise to large deletions to the left of the sul-d marker, but these deletions did not interfere with the sul-d gene function. Restriction maps of pLS80 and its variously deleted derivatives are presented.  相似文献   
12.
Galaptins are small, soluble, lectins with a specificity for beta-galactose residues. Many galaptins are inactivated by atmospheric oxygen and are protected by disulphide-reducing reagents. We find that each subunit of rat lung galaptin contains one residue of tryptophan and six of cysteine. Oxygen inactivates rat lung galaptin by oxidation of the cysteine residues. During oxidation, the normal dimeric structure is maintained and all disulphide bonds are formed within individual subunits. Exogenous thiols protect against inactivation, but oxidized thiols accelerate inactivation. Human lung fibroblast galaptin is almost completely inactivated within 1 h in tissue culture medium at 37 degrees C. Alkylation of native rat lung galaptin with iodoacetate or ethyleneimine causes substantial loss of activity. The dimeric galaptin structure is maintained. In contrast, alkylation with iodoacetamide yields carboxamidomethyl-galaptin, which is fully active and stable to atmospheric oxygen in the absence of disulphide-reducing reagents. This derivative is very useful for studies of galaptin properties and function.  相似文献   
13.
A bifunctional enzyme, L-(+)-tartrate dehydrogenase-D-(+)-malate dehydrogenase (decarboxylating) (EC 1.1.1.93 and EC 1.1.1. . . , respectively), was discovered in cells of Rhodopseudomonas sphaeroides Y, which accounts for the ability of this organism to grow on L-(+)-malate. The enzyme was purified 110-fold to homogeneity with a yield of 51%. During the course of purification, including ion-exchange chromatography and preparative gel electrophoresis, both enzyme activities appeared to be in association. The ratio of their activities remained almost constant [1:10, L-(+)-tartrate dehydrogenase/D-(+)-malate dehydrogenase (decarboxylating)] throughout all steps of purification. Analysis by polyacrylamide gel electrophoresis revealed the presence of a single protein band, the position of which was coincident with both L-(+)-tartrate dehydrogenase and D-(+)-malate dehydrogenase (decarboxylating) activities. The apparent molecular weight of the enzyme was determined to be 158,000 by gel filtration and 162,000 by ultracentrifugation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis yielded a single polypeptide chain with an estimated molecular weight of 38,500, indicating that the enzyme consisted of four subunits of identical size. The isoelectric point of the enzyme was between pH 5.0 and 5.2. The enzyme catalyzed the NAD-linked oxidation of L-(+)-tartrate as well as the oxidative decarboxylation of D-(+)-malate. For both reactions, the optimal pH was in a range from 8.4 to 9.0. The activation energy of the reaction (delta Ho) was 71.8 kJ/mol for L-(+)-tartrate and 54.6 kJ/mol for D-(+)-malate. NAD was required as a cosubstrate, and optimal activity depended on the presence of both Mn2+ and NH4+ ions. The reactions followed Michaelis-Menten kinetics, and the apparent Km values of the individual reactants were determined to be: L-(+)-tartrate, 2.3 X 10(-3) M; NAD, 2.8 X 10(-4) M; and Mn2+, 1.6 X 10(-5) M with respect to L-(+)-tartrate; and D-(+)-malate, 1.7 X 10(-4) M; NAD, 1.3 X 10(-4); and Mn2+, 1.6 X 10(-5) M with respect to D-(+)-malate. Of a variety of compounds tested, only meso-tartrate, oxaloacetate, and dihydroxyfumarate were effective inhibitors. meso-Tartrate and oxaloacetate caused competitive inhibition, whereas dihydroxyfumarate caused noncompetitive inhibition. The Ki values determined for the inhibitors were, in the above sequence, 1.0, 0.014, and 0.06 mM with respect to L-(+)-tartrate and 0.28, 0.012, and 0.027 mM with respect to D-(+)-malate.  相似文献   
14.
The carbon and nitrogen economies of a single cultivar of cowpea (Vigna unguiculata (L.) Walp.cv Caloona) nodulated with either a high H2-evolving strain (176A27) or a low H2-evolving strain (CB756) of Rhizobium were compared. The two symbioses did not differ in total dry matter production, seed yield, nitrogen fixed, the spectrum of nitrogenous solutes produced by nodules for export, or the partitioning of net photosynthate within the plant throughout the growth cycle. Detailed examination of the carbon and nitrogen economy of the nodules, however, showed a significant difference between the symbioses. Nodules formed with CB756 lost less CO2 in respiration compared to the higher H2-evolving symbioses and this could have been largely responsible for a 36% better economy of carbon use in CB756 nodules during the period of maximum H2 evolution (48-76 days) and over the whole growth period (20-90 days), a 16% economy. In terms of overall net photosynthate generated by the plant, these economies were equivalent to 5% and 2% of the carbon utilized in the two periods, respectively. From the differences in H2 evolution and CO2 production by nodules of the two symbioses, the cost of H2 evolution was found to be 3.83±0.6 millimoles CO2/millimoles H2 for plants grown in sand culture and 1.69 ± 0.48 millimoles CO2/millimoles H2 for those in water culture. In both symbioses, the ratio of H2 evolution to N2 fixed varied markedly during ontogeny, indicating a significant variation in the relative efficiency and thus metabolic cost of N2 fixation at different stages during development.  相似文献   
15.
Immune mechanisms active against Brucella were studied under conditions of oxygen deficiency. B. melitensis grew in rabbit serum-Tyrode medium flooded with N2 and CO2 gas mixtures. Immune sera from rabbits injected with B. melitensis strain Rev I possessed growth-inhibitory activity that operated in anaerobic environments against Rev I and virulent strain 6015. When mixed with macrophages, immune sera mediated even greater inhibition of bacterial growth and slowed the spread of infection throughout the tissue culture. Although under anaerobic conditions the rate of phagocytosis was reduced, the macrophages in immune serum killed significant percentages of Brucella, suggesting that an antibacterial mechanism had been activated. Sonic extracts of macrophages prepared and tested under anaerobic conditions depressed the growth rate of strain Rev I. The extracts, however, exhibited no immediate killing capacity when tested in Tyrode solution. A factor from serum was required for depression of the growth rate.  相似文献   
16.
After the uptake of deoxyribonucleic acid (DNA), donor marker-transforming activity is temporarily lost. Restoration of the activity by annealing in vitro supports the idea that donor DNA is single-stranded at this stage. Kinetics of in vivo recovery from eclipse were examined for various markers at three temperatures. Sigmoidal recovery curves at lower temperatures indicate that the process consists of several steps. Rate of recovery was found to depend on the nature of the donor marker. Single-site markers recover much more rapidly than multisite markers corresponding to recipient deletions. Single-site markers vary somewhat in recovery rate, with rapidity of recovery inversely related to integration efficiency. Appearance of a recombinant-transforming activity lags only slightly behind recovery of its constituent donor marker.  相似文献   
17.
18.
Profound insulin-induced hypoglycemia is associated with early-onset neuronal damage that resembles excitotoxic lesions and is attenuated in severity by antagonists of N-methyl-D-aspartate receptors. Hypoglycemia increases L-tryptophan concentrations in brain and could increase the concentration of the L-tryptophan metabolite quinolinic acid (QUIN), an agonist of N-methyl-D-aspartate receptors and an excitotoxin in brain. Therefore, we investigated the effects of 40 min of profound hypoglycemia (isoelectric EEG) and 1-2 h of normoglycemic recovery on the concentrations of QUIN in brain tissue, brain extracellular fluid, and plasma in male Wistar rats. Plasma QUIN increased 6.5-fold by the time of isoelectricity (2 h after insulin administration). Regional brain QUIN concentrations increased two- to threefold during hypoglycemia and increased a further two- to threefold during recovery. However, no change in extracellular fluid QUIN concentrations in hippocampus occurred during hypoglycemia or recovery as measured using in vivo microdialysis. Therefore, the increases in brain tissue QUIN concentrations may reflect elevations of QUIN in the intracellular space or be secondary to the increases in QUIN in the vascular compartment in brain per se. L-Tryptophan concentrations increased more than twofold during recovery only. Serotonin decreased greater than 50% throughout the brain during hypoglycemia, while 5-hydroxyindoleacetic acid concentrations increased more than twofold during hypoglycemia and recovery. In striatum, dopamine was decreased 75% during hypoglycemia but returned to control values during recovery, while striatal 3,4-dihydroxyphenylacetic acid and homovanillic acid were increased more than twofold during both hypoglycemia and recovery.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
19.
Transformation-deficient mutants of piliated Neisseria gonorrhoeae   总被引:11,自引:3,他引:8       下载免费PDF全文
Seven transformation-deficient mutants of piliated, competent Neisseria gonorrhoeae were isolated by screening them for their inability to be transformed by chromosomal DNA after chemical mutagenesis. Three distinct classes of mutants were obtained, each of which was piliated, as determined by electron microscopy. One class exhibited abnormal colony morphology and was unable to take up DNA into a DNase-resistant state. A second class was morphologically normal and took up DNA into a DNase-resistant state normally, but was deficient in both chromosomal and plasmid transformation; mutations in these mutants may affect entry of DNA into the cell proper. A third class was similar to the second but was fully competent for plasmid transformation, suggesting that there was a defect in a late stage of chromosomal transformation.  相似文献   
20.
We report here an efficient and highly reproducible delivery system, using an improved biolistic transformation device, that facilitates transient expression of -glucuronidase (GUS) in chloroplasts of cultured tobacco suspension cells. Cultured tobacco cells collected on filter papers were bombarded with tungsten particles coated with pUC118 or pBI101.3 (negative controls), pBI505 (positive nuclear control) or a chloroplast expression vector (pHD203-GUS), and were assayed for GUS activity. No GUS activity was detected in cells bombarded with pUC118 or pBI101.3. Cells bombarded with pBI505 showed high levels of expression with blue color being distributed evenly throughout the whole cytosol of the transformants. pHD203-GUS was expressed exclusively in chloroplasts. We base this conclusion on: i) the procaryotic nature of the promoter used in the chloroplast expression vector; ii) delayed GUS staining; iii) localization of blue color within subcellular compartments corresponding to plastids in both shape and size; and iv) confirmation of organelle-specific expression of pHD203-GUS using PEG-mediated protoplast transformation. Chloroplast transformation efficiencies increased dramatically (about 200-fold) using an improved helium-driven biolistic device, as compared to the more commonly used gun powder charge-driven device. Using GUS as a reporter gene and the improved biolistic device, optimal bombardment conditions were established, consistently producing several hundred transient chloroplast transformants per Petri plate. Chloroplast transformation efficiency was found to be increased further (20-fold) with supplemental osmoticum (0.55 M sorbitol and 0.55 M mannitol) in the bombardment and incubation medium. This system provides a highly effective mechanism for introducing and expressing plasmid DNA within higher-plant chloroplasts, and the fact that GUS functions as an effective marker gene now makes many genetic studies possible which were not possible before.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号