首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   646篇
  免费   42篇
  2020年   3篇
  2019年   5篇
  2018年   10篇
  2017年   6篇
  2016年   18篇
  2015年   17篇
  2014年   20篇
  2013年   34篇
  2012年   25篇
  2011年   16篇
  2010年   11篇
  2009年   15篇
  2008年   30篇
  2007年   37篇
  2006年   24篇
  2005年   26篇
  2004年   20篇
  2003年   31篇
  2002年   35篇
  2001年   26篇
  2000年   24篇
  1999年   21篇
  1998年   5篇
  1997年   10篇
  1996年   6篇
  1995年   4篇
  1994年   3篇
  1993年   5篇
  1992年   17篇
  1991年   20篇
  1990年   17篇
  1989年   19篇
  1988年   14篇
  1987年   7篇
  1986年   11篇
  1985年   10篇
  1984年   11篇
  1983年   7篇
  1982年   5篇
  1980年   4篇
  1979年   11篇
  1978年   3篇
  1977年   5篇
  1976年   3篇
  1975年   5篇
  1973年   4篇
  1972年   3篇
  1971年   3篇
  1967年   4篇
  1966年   3篇
排序方式: 共有688条查询结果,搜索用时 15 毫秒
61.
Enterococcus sp. K-4, with a bacteriocin-like activity against E. faecium, was isolated from grass silage in Thailand. Morphological, physiological, and phylogenetic studies clearly identified strain K-4 as a strain of E. faecalis. Strain K-4 produced a maximal amount of bacteriocin at 43-45 degrees C. We purified, for the first time, the bacteriocin produced at high temperature by E. faecalis to homogeneity, using adsorption on cells of the producer strain and reversed-phase liquid chromatography. The bacteriocin, designated enterocin SE-K4, is a peptide of about 5 kDa as measured by SDS-PAGE, and Mass spectrometry analysis found the molecular mass of 5356.2, which is in good agreement. The amino acid sequencing of the N-terminal end of enterocin SE-K4 showed apparent sequence similarity to class IIa bacteriocins. Enterocin SE-K4 was active against E. faecium, E. faecalis, Bacillus subtilis, Clostridium beijerinckii, and Listeria monocytogenes. Enterocin SE-K4 is very heat stable.  相似文献   
62.
63.
Reactive oxygen species are involved in the mitogenic signal transduction cascades initiated by several growth factors and play a critical role in mediating cardiovascular diseases. Interestingly, H(2)O(2) induces tyrosine phosphorylation and trans-activation of the platelet-derived growth factor receptor and the epidermal growth factor receptor in many cell lines including vascular smooth muscle cells. To investigate the molecular mechanism by which reactive oxygen species contribute to vascular diseases, we have examined a signal transduction cascade involved in H(2)O(2)-induced platelet-derived growth factor receptor activation in vascular smooth muscle cells. We found that H(2)O(2) induced a ligand-independent phosphorylation of the platelet-derived growth factor-beta receptor at Tyr(1021), a phospholipase C-gamma binding site, involving the requirement of protein kinase C-delta and c-Src that is distinct from a ligand-dependent autophosphorylation. Also, H(2)O(2) induced the association of protein kinase C-delta with the platelet-derived growth factor-beta receptor and c-Src in vascular smooth muscle cells. These findings will provide new mechanistic insights by which enhanced reactive oxygen species production in vascular smooth muscle cells induces unique alleys of signal transduction distinct from those induced by endogenous ligands leading to an abnormal vascular remodeling process.  相似文献   
64.
We describe a novel method, two-dimensional electrophoresis/phage panning (2D-PP), for the generation of antibodies against proteins in crude biochemical samples, such as cellular membrane fractions. These sources have traditionally presented problems as to the development of antibodies by conventional techniques. 2D-PP involves two-dimensional resolution of proteins, blotting of the proteins onto a nitrocellulose membrane, and screening of a phage antibody library and isolation of corresponding antibodies. By 2D-PP with detergent-insoluble "lipid rafts" as a target protein complex, we obtained specific phage pools against eight antigen spots (from a total of 39 spots). These antibodies were functional in Western blotting, enzyme-linked immunosorbent assaying (ELISA), and immunoscreening of a cDNA expression library. Propagation of anti-nitrocellulose phages was the major problem in 2D-PP, but was overcome by the use of the soluble anti-nitrocellulose antibody fragment. 2D-PP constitutes a key tool for functional analysis of proteins in complex fractions.  相似文献   
65.
In vascular smooth muscle cells (VSMCs), angiotensin II (AngII) induces transactivation of the EGF receptor (EGFR) which involves a metalloprotease that stimulates processing of heparin-binding EGF from its precursor. However, the identity and pharmacological sensitivity of the metalloprotease remain unclear. Here, we screened the effects of several metalloprotease inhibitors on AngII-induced EGFR transactivation in VSMCs. We found that an N-phenylsulfonyl-hydroxamic acid derivative [2R-[(4-biphenylsulfonyl)amino]-N-hydroxy-3-phenylpropinamide] (BiPS), previously known as matrix metalloprotease (MMP)-2/9 inhibitor, markedly inhibited AngII-induced EGFR transactivation, whereas the MMP-2 or -9 inhibition by other MMP inhibitors failed to block the transactivation. BiPS markedly inhibited AngII-induced ERK activation and protein synthesis without affecting AngII-induced intracellular Ca2+ elevation. VSMC migration induced by AngII was also inhibited not only by an EGFR inhibitor but also by BiPS. Thus, BiPS is a specific candidate to block AngII-induced EGFR transactivation and subsequent growth and migration of VSMCs, suggesting its potency to prevent vascular remodeling.  相似文献   
66.
We cloned the cDNA for mouse microsomal prostaglandin (PG) E synthase-1 (mPGES-1) and expressed the recombinant enzyme in Escherichia coli. The membrane fraction containing recombinant mPGES-1 catalyzed the isomerization of PGH2 to PGE2 in the presence of GSH with K(m) values of 130 microM for PGH2 and 37 microM for GSH, a turnover number of 600 min(-1), and a k(cat)/K(m) ratio of 4.6 min(-1) microM(-1). Recombinant mPGES-1 was purified and used to generate a polyclonal antibody highly specific for mPGES-1. The antibody showed a single band on Western blotting of microsomal fractions from lipopolysaccharide-treated mouse peritoneal macrophages. Northern and Western blotting analyses revealed that mPGES-1 was induced together with cyclooxygenase-2 in mouse macrophages after treatment of the cells with lipopolysaccharide. Confocal immunofluorescence microscopy revealed that both mPGES-1 and cyclooxygenase-2 were colocalized in the lipopolysaccharide-treated macrophages. Taken together, these results demonstrate that mPGES-1 is an efficient downstream enzyme for the production of PGE2 in the activated macrophages treated by lipopolysaccharide.  相似文献   
67.
Estrogens have important physiological roles in the cardiovascular system. We use DNA microarray technology to study the molecular mechanism of estrogen action in the heart and to identify novel estrogen-regulated genes. In this investigation we identify genes that are regulated by chronic estrogen treatment of mouse heart. We present our detailed characterization of one of these genes, lipocalin-type prostaglandin D synthase (L-PGDS). Northern and Western blot analysis revealed that L-PGDS was induced both by acute and chronic estrogen treatment. Northern blot analysis, using estrogen receptor (ER)-disrupted mice, suggests that L-PGDS is specifically induced by ERbeta in vivo. In further support of ERbeta-selective regulation, we identify a functional estrogen-responsive element in the L-PGDS promoter, the activity of which is up-regulated by ERbeta, but not by ERalpha. We demonstrate that a one-nucleotide change (A to C) in the L-PGDS estrogen-responsive element affects receptor selectivity.  相似文献   
68.
69.
Reactive oxygen species (ROS) are implicated in cardiovascular diseases. ROS, such as H2O2, act as second messengers to activate diverse signaling pathways. Although H2O2 activates several tyrosine kinases, including the epidermal growth factor (EGF) receptor, JAK2, and PYK2, in vascular smooth muscle cells (VSMCs), the intracellular mechanism by which ROS activate these tyrosine kinases remains unclear. Here, we identified two distinct signaling pathways required for receptor and nonreceptor tyrosine kinase activation by H2O2 involving a metalloprotease-dependent generation of heparin-binding EGF-like growth factor (HB-EGF) and protein kinase C (PKC)-delta activation, respectively. H2O2-induced EGF receptor tyrosine phosphorylation was inhibited by a metalloprotease inhibitor, whereas the inhibitor had no effect on H2O2-induced JAK2 tyrosine phosphorylation. HB-EGF neutralizing antibody inhibited H2O2-induced EGF receptor phosphorylation. In COS-7 cells expressing an HB-EGF construct tagged with alkaline phosphatase, H2O2 stimulates HB-EGF production through metalloprotease activation. By contrast, dominant negative PKC-delta transfection inhibited H2O2-induced JAK2 phosphorylation but not EGF receptor phosphorylation. Dominant negative PYK2 inhibited H2O2-induced JAK2 activation but not EGF receptor activation, whereas dominant negative PKC-delta inhibited PYK2 activation by H2O2. These data demonstrate the presence of distinct tyrosine kinase activation pathways (PKC-delta/PYK2/JAK2 and metalloprotease/HB-EGF/EGF receptor) utilized by H2O2 in VSMCs, thus providing unique therapeutic targets for cardiovascular diseases.  相似文献   
70.
Day-night changes in rhabdom size of compound eyes were investigated in three groups of crickets (Gryllus bimaculatus): nymphs and adult males and females. In both adults and nymphs, the rhabdoms were larger at night than during a day. In adults, the mean rhabdom occupation ratios (RORs) of ommatidial retinulae at midnight were about two times greater than the values at midday. This change contributes to control of the photon capture efficiency (PCE) of the eye according to photic environment. The RORs of adult males at midnight were higher than those of both adult females and nymphs. This suggests that the PCE of the compound eye of adult males is the greatest of all groups. Under constant darkness, day-night changes in ROR were detected only in adult males, but neither in adult females nor in nymphs. On the other hand, no day-night changes were detected in any experimental group under constant light. These results suggest that the change in rhabdom size between day and night is an adaptation to the photic environment that is controlled mainly by the light-dark (day-night) cycle. However, the change in male adults is induced by an endogenous circadian clock.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号