首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   157篇
  免费   5篇
  国内免费   1篇
  2021年   2篇
  2020年   1篇
  2019年   5篇
  2018年   3篇
  2017年   2篇
  2016年   3篇
  2015年   7篇
  2014年   7篇
  2013年   4篇
  2012年   7篇
  2011年   7篇
  2010年   7篇
  2009年   5篇
  2008年   7篇
  2007年   6篇
  2006年   3篇
  2005年   3篇
  2004年   3篇
  2003年   4篇
  2002年   4篇
  2001年   3篇
  2000年   3篇
  1999年   4篇
  1998年   7篇
  1997年   5篇
  1996年   4篇
  1995年   2篇
  1994年   6篇
  1993年   3篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   4篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1971年   3篇
  1970年   2篇
  1968年   1篇
排序方式: 共有163条查询结果,搜索用时 15 毫秒
81.
82.
Upon exposure to low temperature under constant light conditions, the cyanobacterium Synechococcus sp. PCC 7942 exchanges the photosystem II reaction center D1 protein form 1 (D1:1) with D1 protein form 2 (D1:2). This exchange is only transient, and after acclimation to low temperature the cells revert back to D1:1, which is the preferred form in acclimated cells (Campbell, D., Zhou, G., Gustafsson, P., Oquist, G., and Clarke, A. K. (1995) EMBO J. 14, 5457-5466). In the present work we use thermoluminescence to study charge recombination events between the acceptor and donor sides of photosystem II in relation to D1 replacement. The data indicate that in cold-stressed cells exhibiting D1:2, the redox potential of Q(B) becomes lower approaching that of Q(A). This was confirmed by examining the Synechococcus sp. PCC 7942 inactivation mutants R2S2C3 and R2K1, which possess only D1:1 or D1:2, respectively. In contrast, the recombination of Q(A)(-) with the S(2) and S(3) states did not show any change in their redox characteristics upon the shift from D1:1 to D1:2. We suggest that the change in redox properties of Q(B) results in altered charge equilibrium in favor of Q(A). This would significantly increase the probability of Q(A)(-) and P680(+) recombination. The resulting non-radiative energy dissipation within the reaction center of PSII may serve as a highly effective protective mechanism against photodamage upon excessive excitation. The proposed reaction center quenching is an important protective mechanism because antenna and zeaxanthin cycle-dependent quenching are not present in cyanobacteria. We suggest that lowering the redox potential of Q(B) by exchanging D1:1 for D1:2 imparts the increased resistance to high excitation pressure induced by exposure to either low temperature or high light.  相似文献   
83.
We present an improved technique for estimating protein secondary structure content from amide I and amide III band infrared spectra. This technique combines the superposition of reference spectra of pure secondary structure elements with simultaneous aromatic side chain, water vapor, and solvent background subtraction. Previous attempts to generate structural reference spectra from a basis set of reference protein spectra have had limited success because of inaccuracies arising from sequential background subtractions and spectral normalization, arbitrary spectral band truncation, and attempted resolution of spectroscopically degenerate structure classes. We eliminated these inaccuracies by defining a single mathematical function for protein spectra, permitting all subtractions, normalizations, and amide band deconvolution steps to be performed simultaneously using a single optimization algorithm. This approach circumvents many of the problems associated with the sequential nature of previous methods, especially with regard to removing the subjectivity involved in each processing step. A key element of this technique was the calculation of reference spectra for ordered helix, unordered helix, sheet, turns, and unordered structures from a basis set of spectra of well-characterized proteins. Structural reference spectra were generated in the amide I and amide III bands, both of which have been shown to be sensitive to protein secondary structure content. We accurately account for overlaps between amide and nonamide regions and allow different structure types to have different extinction coefficients. The agreement between our structure estimates, for proteins both inside and outside the basis set, and the corresponding determinations from X-ray crystallography is good.  相似文献   
84.
Drought and high salinity are environmental conditions that cause adverse effects on the growth and productivity of crops. Aquaporins are small integral membrane proteins that belong to the family of the major intrinsic proteins (MIPs), with members in animals, plants and microbes, where they facilitate the transport of water and/or small neutral solutes thereby affecting water balance. In this study we characterized two aquaporin genes namely, plasma membrane intrinsic protein (PIP2;7) and tonoplast intrinsic protein TIP1;3 from Jatropha curcas that are localised to the plasma membrane and vacuole respectively. Transgenic Arabidopsis thaliana lines over-expressing JcPIP2;7 and JcTIP1;3 under a constitutive promoter show improved germination under high salt and mannitol compared to control seeds. These transgenic plants also show increased root length under abiotic stress conditions compared to wild type Col-0 plants. Transgenic lines exposed to drought conditions by withholding water for 20 days, were able to withstand water stress and attained normal growth after re-watering unlike control plants which could not survive. Transgenic lines also had better seed yield than control under salt stress. Importantly, seed viability of transgenic plants grown under high salt concentration was 35%-45% compared to less than 5% for control seeds obtained from plants growing under salt stress. The effect of JcPIP2;7 and JcTIP1;3 on improving germination and seed viability in drought and salinity make these important candidates for genetic manipulation of plants for growth in saline soils.  相似文献   
85.
86.
Wild abortive cytoplasmic male sterility has been extensively used in hybrid seed production in the tropics. Using protoplast fusion between cytoplasmic male sterile and fertile maintainer lines; we report here, transfer of wild abortive cytoplasmic male sterility to the nuclear background of RCPL1-2C, an advance breeding line which also served as maintainer of this cytoplasm. In total, 27 putative cybrids between V20A and RCPL1-2C and 23 lines between V20A and V20B were recovered and all of them were sterile. DNA blots prepared from the mitochondrial DNA of the cybrid lines from both the sets were probed with orf155 that is known to exhibit polymorphism between the mitochondrial DNA of the male-sterile and fertile maintainer lines. Hybridization of orf155 to 1.3 kb HindIII-digested mitochondrial DNA fragment of the cybrids showed transfer of mitochondrial DNA from wild abortive cytoplasmic male-sterile line to the maintainers, viz. RCPL 1-2C and V20B. Expression of male sterility was confirmed by the presence of sterile pollen grains and the lack of seed setting due to selfing in all the cybrid lines. These cybrids, on crossing with respective fertile maintainers set seeds that in turn, produced sterile BC1 plants. DNA blots from HindIII-digested mitochondrial DNA of these BC1 plants when probed with orf155 again exhibited localization of orf155 in wild abortive cytoplasm-specific 1.3 kb HindIII-digested mitochondrial DNA fragments. This demonstrated that the cytoplasmic male sterility transferred through protoplast fusion retained intact female fertility and was inherited and expressed in BC1 plants. Fusion-derived CMS lines, on pollination with pollen grains from restorer, showed restoration of fertility in all the lines. The results demonstrate that protoplasts fusion can be used for transferring maternally inherited traits like cytoplasmic male sterility to the desired nuclear background which can, in turn, be used in hybrid seed production programme of rice in the tropical world.  相似文献   
87.
 RAPD profiles were generated using mitochondrial DNA (mtDNA) isolated from two cytoplasmic male-sterile lines, two restorer lines and four maintainer lines of rice. Of the 40 primers tested, 25 generated consistent and easily scoreable patterns that were used for the computation of pairwise similarities as well as UPGMA analyses. The different lines of rice, including lines IR58025A and IR62829A that contained the same wild abortive (WA) cytoplasm, were distinguishable on the basis of RAPD profiles. These latter two lines were not distinguishable from each other by mtDNA RFLP analyses with as many as 16 mtDNA probes. The data illustrate the utility of the RAPD technique as a powerful tool for distinguishing different cytoplasms that by other techniques appear to be similar. To our knowledge, this is the first report wherein RAPD profiles obtained with isolated mtDNA templates enable the distinction between two or more types of cytoplasms in rice. Received: 1 April 1997 / Accepted: 2 June 1997  相似文献   
88.
89.
90.
The flow physics in the product chamber of a freeze dryer involves coupled heat and mass transfer at different length and time scales. The low-pressure environment and the relatively small flow velocities make it difficult to quantify the flow structure experimentally. The current work presents the three-dimensional computational fluid dynamics (CFD) modeling for vapor flow in a laboratory scale freeze dryer validated with experimental data and theory. The model accounts for the presence of a non-condensable gas such as nitrogen or air using a continuum multi-species model. The flow structure at different sublimation rates, chamber pressures, and shelf-gaps are systematically investigated. Emphasis has been placed on accurately predicting the pressure variation across the subliming front. At a chamber set pressure of 115 mtorr and a sublimation rate of 1.3 kg/h/m2, the pressure variation reaches about 9 mtorr. The pressure variation increased linearly with sublimation rate in the range of 0.5 to 1.3 kg/h/m2. The dependence of pressure variation on the shelf-gap was also studied both computationally and experimentally. The CFD modeling results are found to agree within 10% with the experimental measurements. The computational model was also compared to analytical solution valid for small shelf-gaps. Thus, the current work presents validation study motivating broader use of CFD in optimizing freeze-drying process and equipment design.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号